[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article
Free access

Complete Sets of Reductions for Some Equational Theories

Published: 01 April 1981 Publication History
First page of PDF

References

[1]
COHN, P.M. Universal Algebra. Harper and Row, New York, 1965.
[2]
DERSHOWITZ, N, AND MANNA,Z Proving termination with multiset ordermgs. Commun. ACM 22, 8(Aug 1979), 465-476.
[3]
EVANS, T. On multiphcatwe systems defined by generators and relaUons. I. Normal form theorems. Proc. Cambridge Phd. Soc 47 (1951), 637-649.
[4]
HINDLEY, R. An abstract Church-Rosser theorem, ii Apphcattons. J Symbohc Logzc 39 (1974), 1-21.
[5]
HUET, G. Umficatlon m typed lambda calculus, in h Calculus and Computer Science Theory, Lecture Notes m Computer Science 37, Springer Verlag, Heidelberg, 1975, pp 192-212.
[6]
HUET,G. Unification dans des langages d'ordre 1, 2 .. w These d'Etat, Universit6 Pans VI, 1976.
[7]
HUET, G Confluent reductions. Abstract properties and apphcations to term rewriting systems J A CM 27, 4(Oct 1980), 797-821
[8]
HUET, G., AND OPPEN, D C Equations and rewrite rules. Tech Rep. CSL-II, SRI International, Menlo Park, Cahf, 1980.
[9]
KNUTH, D.E., AND BENDIX, P.B.Simple word problems in umversal algebras. In Computational Problems m Abstract Algebras, J Leech, Ed, Pergammon Press, 1970, pp. 263-297.
[10]
LANKFORD, D S. Canomcal algebraic slmphficatlon m computaUonal logic Tech. Rep, Mathemaucs Dep, Unlv of Texas, Austin, Texas, May 1975
[11]
LANKFORD, D S Canonical reference Tech. Rep., Mathemaucs Dep., Umv of Texas, Austin, Texas, Dec. 1975
[12]
LANKFORD, D S A umficatlon algorithm for Abehan group theory Tech Rep., Mathematics Dep, Lomslana Tech Umv, Ruston, La, January 1979.
[13]
LANKFORD, D.S On proving term rewriting systems are noethenan. Tech Pep., Mathematics Dep, Louisiana Tech Umv, Ruston, La., May 1979
[14]
LANKFORD, D.S, AND BALLANTYNE, A.M. Decision procedures for simple equational theories wRh a commutative axiom. Complete sets of commutative reductions Tech Rep., Mathematics Dep., Univ. of Texas, Austin, Texas, March 1977
[15]
LANK_FORD, D.S, AND BALLANTYNE, A M Decision procedures for simple equational theories with permutattve axioms: Complete sets of permutative reductions. Tech Rep, Mathematics Dep., Univ of Texas, Austin, Texas, April 1977
[16]
LANKFORD, D S, AND BALLANTYNE, A.M.Decision procedures for simple equational theories with commutatwe-associative axioms. Complete sets of commutative-associative reductions. Tech. Rep, Mathematics Dep., Umv. of Texas, Austin, Texas, Aug 1977
[17]
LIVESEY, M., AND SIEKMANN, J Termination and decidability results for string-unification Memo CSM-12, Essex Univ. Computing Center, Colchester, Essex, England, Aug. 1975.
[18]
LIVESEY, M, AND SIEKMANN, J.Umficatlon of A+C-terms (bags) and A+C+l-terms (sets) Interner Bencht Nr 5/76, lnstitut fur Informatik I, Umversltat Karlsruhe, Karlsruhe, W. Germany, 1976
[19]
MANNA, Z Mathemat, cal Theory of Computatmn McGraw-Hill, New York, 1974.
[20]
NEWMAN, M.H.A On theories w~th a combinatorial defmmon of "equivalence." Ann. Math 43 (1942), 223-243.
[21]
PLOTKIN, G.D.Buddmg-m equational theories. Machine intelhgence 7, B. Meltzer and D Mlchle, Eds., Halsted Press, 1972, pp. 73-90.
[22]
QUINE, W.V.The problem of stmphfymg truth funcnons Am. Math Monthly 59, 8 (Oct. 1952), 521-531
[23]
RAULEFS, P, SIEKMANN, J., SZABO, P., AND UNVERICHT, E A short survey on the state of the art m matchmg and umficatmn problems SIGSAM Bulletin 13, 2 (May 1979), 14-20
[24]
ROBINSON, J A A machine-oriented logic based on the resolutmn pnnclple J A CM 12, 1 (Jan 1965), 23-41.
[25]
ROSEN, B K Tree-mampulatmg systems and Church-Rosser theorems. J ACM 20, 1 (Jan. 1973), 160-187.
[26]
SIEKMANN, J Stnng-umfication, part I Essex University, Colchester, Essex, England, March 1975
[27]
SIEKMANN,T-umficatton, part i Umficatton of commutative terms. Interner Bencht Nr 4/76, Instttut fur Informatik I, Umvers~tat Karlsruhe, Karlsruhe, W Germany, 1976
[28]
SLAGLE, J R Automated theorem-proving for theories with stmphfiers, commutattvtty, and assoctatwity. J ACM 21, 4 (Oct 1974), 622-642
[29]
STICK.EL, M.E. A complete umficatlon algorithm for associative-commutative funct,ons. Advance Papers 4th Int. Jomt Conf on Amficlal Intelhgence, Tbihsi, U.S.S.R., 1975, pp. 71-76 To appear in J ACM.
[30]
STICKEL, M.E.Mechanical theorem proving and artificial intelhgence languages. Ph.D. Dlss., Carnegie-Mellon Onw., Pittsburgh, Pa, 1977.
[31]
MAKANIN, G.S.The problem of solvability of equations in a free semigroup. Soviet Akad. Nauk SSSR 233, 2 (1977).

Cited By

View all
  • (2024)Combined Abstract Congruence Closure for Theories with Associativity or CommutativityLogic-Based Program Synthesis and Transformation10.1007/978-3-031-71294-4_5(82-98)Online publication date: 9-Sep-2024
  • (2023)Confluence of Terminating Rewriting ComputationsThe French School of Programming10.1007/978-3-031-34518-0_11(265-306)Online publication date: 11-Oct-2023
  • (2022)String Diagram Rewrite Theory I: Rewriting with Frobenius StructureJournal of the ACM10.1145/350271969:2(1-58)Online publication date: 10-Mar-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 28, Issue 2
April 1981
229 pages
ISSN:0004-5411
EISSN:1557-735X
DOI:10.1145/322248
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 April 1981
Published in JACM Volume 28, Issue 2

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)123
  • Downloads (Last 6 weeks)12
Reflects downloads up to 04 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Combined Abstract Congruence Closure for Theories with Associativity or CommutativityLogic-Based Program Synthesis and Transformation10.1007/978-3-031-71294-4_5(82-98)Online publication date: 9-Sep-2024
  • (2023)Confluence of Terminating Rewriting ComputationsThe French School of Programming10.1007/978-3-031-34518-0_11(265-306)Online publication date: 11-Oct-2023
  • (2022)String Diagram Rewrite Theory I: Rewriting with Frobenius StructureJournal of the ACM10.1145/350271969:2(1-58)Online publication date: 10-Mar-2022
  • (2022)Coherent confluence modulo relations and double groupoidsJournal of Pure and Applied Algebra10.1016/j.jpaa.2022.107037226:10(107037)Online publication date: Oct-2022
  • (2022)Associative unification in MaudeJournal of Logical and Algebraic Methods in Programming10.1016/j.jlamp.2021.100747126(100747)Online publication date: Apr-2022
  • (2022)Towards automated deduction in cP systemsInformation Sciences: an International Journal10.1016/j.ins.2021.12.035587:C(435-449)Online publication date: 1-Mar-2022
  • (2022)Set of Support, Demodulation, Paramodulation: A Historical PerspectiveJournal of Automated Reasoning10.1007/s10817-022-09628-066:4(463-497)Online publication date: 1-Nov-2022
  • (2022)On Ground Convergence and Completeness of Conditional Equational Program HierarchiesRewriting Logic and Its Applications10.1007/978-3-031-12441-9_10(191-211)Online publication date: 2-Apr-2022
  • (2022)Equational Unification and Matching, and Symbolic Reachability Analysis in Maude 3.2 (System Description)Automated Reasoning10.1007/978-3-031-10769-6_31(529-540)Online publication date: 8-Aug-2022
  • (2022)Equivalence Checking for Orthocomplemented Bisemilattices in Log-Linear TimeTools and Algorithms for the Construction and Analysis of Systems10.1007/978-3-030-99527-0_11(196-214)Online publication date: 2-Apr-2022
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media