Abstract
The collaborative filtering (CF) is considered as the most widely used approach in the field of Recommender Systems (RSs). It tends to predict the users’ preferences based on the users sharing similar interests. However, ignoring the uncertainty involved in the provided predictions is among the limitations related to this approach. To deal with this issue, we propose in this paper a new user-based collaborative filtering within the belief function theory. In our approach, the evidence of each similar user is taken into account and Dempster’s rule of combination is used for combining these pieces of evidence. A comparative evaluation on a real world data set shows that the proposed method outperforms traditional user-based collaborative filtering recommenders.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Bobadilla, J., Ortega, F., Hernando, A., Gutierrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)
Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 1–34. Springer, US (2015)
Koren, Y., Sill, J.: Collaborative filtering on ordinal user feedback. In: International Joint Conference on Artificial Intelligence, pp. 3022–3026 (2013)
Zheng, Y., Ouyang, Y., Rong, W., Xiong, Z.: Multi-faceted distrust aware recommendation. In: Zhang, S., Wirsing, M., Zhang, Z. (eds.) KSEM 2015. LNCS, vol. 9403, pp. 435–446. Springer, Cham (2015). doi:10.1007/978-3-319-25159-2_39
Boulkrinat, S., Hadjali, A., Aissani Mokhtari, A.: Handling preferences under uncertainty in recommender systems. In: IEEE International Conference on Fuzzy Systems, pp. 2262–2269 (2014)
Nguyen, V.-D., Huynh, V.-N.: A reliably weighted collaborative filtering system. In: Destercke, S., Denoeux, T. (eds.) ECSQARU 2015. LNCS, vol. 9161, pp. 429–439. Springer, Cham (2015). doi:10.1007/978-3-319-20807-7_39
Zenebe, A., Norcio, A.F.: Representation, similarity measures and aggregation methods using fuzzy sets for content-based recommender systems. Fuzzy Sets Syst. 160(1), 76–94 (2009)
Abdelkhalek, R., Boukhris, I., Elouedi, Z.: Evidential item-based collaborative filtering. In: Lehner, F., Fteimi, N. (eds.) KSEM 2016. LNCS, vol. 9983, pp. 628–639. Springer, Cham (2016). doi:10.1007/978-3-319-47650-6_49
Yu, K., Schwaighofer, A., Tresp, V., Xu, X., Kriegel, H.-P.: Probabilistic memory-based collaborative filtering. IEEE Trans. Knowl. Data Eng. 16(1), 56–69 (2004)
Mehdi, M., Bouguila, N., Bentahar, J.: Probabilistic approach for QoS-aware recommender system for trustworthy web service selection. Appl. Intell. 41(2), 503–524 (2014)
Slokom, M., Ayachi, R.: Towards a new possibilistic collaborative filtering approach. In: Second international conference on computer science, Computer Engineering, and Social Media, pp. 209–216 (2015)
Smets, P.: The transferable belief model for quantified belief representation. In: Smets, P. (ed.) Quantified Representation of Uncertainty and Imprecision, pp. 267–301. Springer, Dordrecht (1998)
Dempster, A.P.: A generalization of bayesian inference. J. R. Stat. Soc. Ser. B (Methodological) 30, 205–247 (1968)
Shafer, G.: A Mathematical Theory of Evidence, vol. 1. Princeton University Press, Princeton (1976)
Denoeux, T.: A K-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. 25(5), 804–813 (1995)
Zhao, Z.D., Shang, M.S.: User-based collaborative-filtering recommendation algorithms on hadoop. In: Third International Conference on Knowledge Discovery and Data Mining, pp. 478–481 (2010)
Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. In: Kohavi, R., Provost, F. (eds.) Applications of Data Mining to Electronic Commerce, pp. 115–153. Springer, New York (2001)
Amatriain, X., Pujol, J.M.: Data mining methods for recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 227–262. Springer, US (2015)
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: International Conference on World Wide Web, pp. 285–295 (2001)
Sanchez, J., Serradilla, F., Martinez, E., Bobadilla, J.: Choice of metrics used in collaborative filtering and their impact on recommender systems. In: IEEE International Conference on Digital Ecosystems and Technologies, pp. 432–436 (2008)
Bobadilla, J., Hernando, A., Ortega, F., Bernal, J.: A framework for collaborative filtering recommender systems. Expert Syst. Appl. 38(12), 14609–14623 (2011)
Su, X., Khoshgoftaar, T.M.: Collaborative filtering for multi-class data using bayesian networks. Int. J. Artif. Intell. Tools 17(01), 71–85 (2008)
Pennock, D.M., Horvitz, E., Lawrence, S., Giles, C.L.: Collaborative filtering by personality diagnosis: a hybrid memory-and model-based approach. In: The Conference on Uncertainty in Artificial Intelligence, pp. 473–480 (2000)
Bennett, J., Lanning, S.: The Netflix prize. In: KDD Cup and Workshop, p. 35 (2007)
Elouedi, Z., Mellouli, K., Smets, P.: Assessing sensor reliability for multisensor data fusion within the transferable belief model. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 34(1), 782–787 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Abdelkhalek, R., Boukhris, I., Elouedi, Z. (2017). A New User-Based Collaborative Filtering Under the Belief Function Theory. In: Benferhat, S., Tabia, K., Ali, M. (eds) Advances in Artificial Intelligence: From Theory to Practice. IEA/AIE 2017. Lecture Notes in Computer Science(), vol 10350. Springer, Cham. https://doi.org/10.1007/978-3-319-60042-0_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-60042-0_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60041-3
Online ISBN: 978-3-319-60042-0
eBook Packages: Computer ScienceComputer Science (R0)