[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New User-Based Collaborative Filtering Under the Belief Function Theory

  • Conference paper
  • First Online:
Advances in Artificial Intelligence: From Theory to Practice (IEA/AIE 2017)

Abstract

The collaborative filtering (CF) is considered as the most widely used approach in the field of Recommender Systems (RSs). It tends to predict the users’ preferences based on the users sharing similar interests. However, ignoring the uncertainty involved in the provided predictions is among the limitations related to this approach. To deal with this issue, we propose in this paper a new user-based collaborative filtering within the belief function theory. In our approach, the evidence of each similar user is taken into account and Dempster’s rule of combination is used for combining these pieces of evidence. A comparative evaluation on a real world data set shows that the proposed method outperforms traditional user-based collaborative filtering recommenders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://movielens.org.

References

  1. Bobadilla, J., Ortega, F., Hernando, A., Gutierrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)

    Article  Google Scholar 

  2. Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 1–34. Springer, US (2015)

    Chapter  Google Scholar 

  3. Koren, Y., Sill, J.: Collaborative filtering on ordinal user feedback. In: International Joint Conference on Artificial Intelligence, pp. 3022–3026 (2013)

    Google Scholar 

  4. Zheng, Y., Ouyang, Y., Rong, W., Xiong, Z.: Multi-faceted distrust aware recommendation. In: Zhang, S., Wirsing, M., Zhang, Z. (eds.) KSEM 2015. LNCS, vol. 9403, pp. 435–446. Springer, Cham (2015). doi:10.1007/978-3-319-25159-2_39

    Chapter  Google Scholar 

  5. Boulkrinat, S., Hadjali, A., Aissani Mokhtari, A.: Handling preferences under uncertainty in recommender systems. In: IEEE International Conference on Fuzzy Systems, pp. 2262–2269 (2014)

    Google Scholar 

  6. Nguyen, V.-D., Huynh, V.-N.: A reliably weighted collaborative filtering system. In: Destercke, S., Denoeux, T. (eds.) ECSQARU 2015. LNCS, vol. 9161, pp. 429–439. Springer, Cham (2015). doi:10.1007/978-3-319-20807-7_39

    Chapter  Google Scholar 

  7. Zenebe, A., Norcio, A.F.: Representation, similarity measures and aggregation methods using fuzzy sets for content-based recommender systems. Fuzzy Sets Syst. 160(1), 76–94 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Abdelkhalek, R., Boukhris, I., Elouedi, Z.: Evidential item-based collaborative filtering. In: Lehner, F., Fteimi, N. (eds.) KSEM 2016. LNCS, vol. 9983, pp. 628–639. Springer, Cham (2016). doi:10.1007/978-3-319-47650-6_49

    Chapter  Google Scholar 

  9. Yu, K., Schwaighofer, A., Tresp, V., Xu, X., Kriegel, H.-P.: Probabilistic memory-based collaborative filtering. IEEE Trans. Knowl. Data Eng. 16(1), 56–69 (2004)

    Article  Google Scholar 

  10. Mehdi, M., Bouguila, N., Bentahar, J.: Probabilistic approach for QoS-aware recommender system for trustworthy web service selection. Appl. Intell. 41(2), 503–524 (2014)

    Article  Google Scholar 

  11. Slokom, M., Ayachi, R.: Towards a new possibilistic collaborative filtering approach. In: Second international conference on computer science, Computer Engineering, and Social Media, pp. 209–216 (2015)

    Google Scholar 

  12. Smets, P.: The transferable belief model for quantified belief representation. In: Smets, P. (ed.) Quantified Representation of Uncertainty and Imprecision, pp. 267–301. Springer, Dordrecht (1998)

    Chapter  Google Scholar 

  13. Dempster, A.P.: A generalization of bayesian inference. J. R. Stat. Soc. Ser. B (Methodological) 30, 205–247 (1968)

    MathSciNet  MATH  Google Scholar 

  14. Shafer, G.: A Mathematical Theory of Evidence, vol. 1. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  15. Denoeux, T.: A K-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. 25(5), 804–813 (1995)

    Article  Google Scholar 

  16. Zhao, Z.D., Shang, M.S.: User-based collaborative-filtering recommendation algorithms on hadoop. In: Third International Conference on Knowledge Discovery and Data Mining, pp. 478–481 (2010)

    Google Scholar 

  17. Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. In: Kohavi, R., Provost, F. (eds.) Applications of Data Mining to Electronic Commerce, pp. 115–153. Springer, New York (2001)

    Chapter  Google Scholar 

  18. Amatriain, X., Pujol, J.M.: Data mining methods for recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 227–262. Springer, US (2015)

    Chapter  Google Scholar 

  19. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: International Conference on World Wide Web, pp. 285–295 (2001)

    Google Scholar 

  20. Sanchez, J., Serradilla, F., Martinez, E., Bobadilla, J.: Choice of metrics used in collaborative filtering and their impact on recommender systems. In: IEEE International Conference on Digital Ecosystems and Technologies, pp. 432–436 (2008)

    Google Scholar 

  21. Bobadilla, J., Hernando, A., Ortega, F., Bernal, J.: A framework for collaborative filtering recommender systems. Expert Syst. Appl. 38(12), 14609–14623 (2011)

    Article  Google Scholar 

  22. Su, X., Khoshgoftaar, T.M.: Collaborative filtering for multi-class data using bayesian networks. Int. J. Artif. Intell. Tools 17(01), 71–85 (2008)

    Article  Google Scholar 

  23. Pennock, D.M., Horvitz, E., Lawrence, S., Giles, C.L.: Collaborative filtering by personality diagnosis: a hybrid memory-and model-based approach. In: The Conference on Uncertainty in Artificial Intelligence, pp. 473–480 (2000)

    Google Scholar 

  24. Bennett, J., Lanning, S.: The Netflix prize. In: KDD Cup and Workshop, p. 35 (2007)

    Google Scholar 

  25. Elouedi, Z., Mellouli, K., Smets, P.: Assessing sensor reliability for multisensor data fusion within the transferable belief model. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 34(1), 782–787 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raoua Abdelkhalek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Abdelkhalek, R., Boukhris, I., Elouedi, Z. (2017). A New User-Based Collaborative Filtering Under the Belief Function Theory. In: Benferhat, S., Tabia, K., Ali, M. (eds) Advances in Artificial Intelligence: From Theory to Practice. IEA/AIE 2017. Lecture Notes in Computer Science(), vol 10350. Springer, Cham. https://doi.org/10.1007/978-3-319-60042-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60042-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60041-3

  • Online ISBN: 978-3-319-60042-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics