Abstract
Item-based collaborative filtering is among the most widely used recommendation approaches. It consists of identifying the most similar items in order to perform recommendations accordingly. However, the reliability of the information provided by these pieces of evidence cannot be fully trusted. Hence, quantifying their reliability seems imperative to form more valuable evidence. This paper contributes to the problem of covering uncertainty in the prediction process using the belief function theory. Our approach tends to take into account the different degrees of reliability of each similar item based on the discounting factor. Then, Dempster’s rule of combination is used as an aggregation operator to combine these pieces of evidence. The performance of the new evidential method is validated on a real world data set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
http://movielens.org.
References
Park, Y., Park, S., Jung, W., Lee, S.G.: Reversed CF: a fast collaborative filtering algorithm using a k-nearest neighbor graph. Expert Syst. Appl. 42(8), 4022–4028 (2015)
Nguyen, V.-D., Huynh, V.-N.: A community-based collaborative filtering system dealing with sparsity problem and data imperfections. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS, vol. 8862, pp. 884–890. Springer, Cham (2014). doi:10.1007/978-3-319-13560-1_74
Dempster, A.P.: A generalization of bayesian inference. J. Roy. Stat. Soc. Ser. B (Methodol.) 30, 205–247 (1968)
Shafer, G.: A Mathematical Theory of Evidence, vol. 1. Princeton University Press, Princeton (1976)
Smets, P.: The transferable belief model for quantified belief representation. In: Smets, P. (ed.) Quantified Representation of Uncertainty and Imprecision, pp. 267–301. Springer, Dordrecht (1998)
Chow, Y.S., Teicher, H.: Probability Theory: Independence, Interchangeability, Martingales. Springer Science and Business Media, New York (2012)
Dubois, D., Prade, H.: Possibility Theory and Its Applications: Where Do We Stand?. Springer Handbook of Computational Intelligence. Springer, Berlin Heidelberg (2015)
Abdelkhalek, R., Boukhris, I., Elouedi, Z.: Evidential item-based collaborative filtering. In: Lehner, F., Fteimi, N. (eds.) KSEM 2016. LNCS, vol. 9983, pp. 628–639. Springer, Cham (2016). doi:10.1007/978-3-319-47650-6_49
Nguyen, V.-D., Huynh, V.-N.: A reliably weighted collaborative filtering system. In: Destercke, S., Denoeux, T. (eds.) ECSQARU 2015. LNCS, vol. 9161, pp. 429–439. Springer, Cham (2015). doi:10.1007/978-3-319-20807-7_39
Nguyen, V.-D., Huynh, V.-N.: Integrating with social network to enhance recommender system based-on dempster-shafer theory. In: Nguyen, H.T.T., Snasel, V. (eds.) CSoNet 2016. LNCS, vol. 9795, pp. 170–181. Springer, Cham (2016). doi:10.1007/978-3-319-42345-6_15
Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 4, 1–19 (2009)
Zhao, Z.D., Shang, M.S.: User-based collaborative-filtering recommendation algorithms on hadoop. In: International Conference on Knowledge Discovery and Data Mining, pp. 478–481 (2010)
Kim, H.-N., Ji, A.-T., Jo, G.-S.: Enhanced prediction algorithm for item-based collaborative filtering recommendation. In: Bauknecht, K., Pröll, B., Werthner, H. (eds.) EC-Web 2006. LNCS, vol. 4082, pp. 41–50. Springer, Heidelberg (2006). doi:10.1007/11823865_5
Aggarwal, C.C.: Neighborhood-Based Collaborative Filtering. In: Recommender Systems, pp. 29–70. Springer International Publishing (2016)
Denoeux, T.: A K-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybernet. 25(5), 804–813 (1995)
Su, X., Khoshgoftaar, T.M.: Collaborative filtering for multi-class data using bayesian networks. Int. J. Artif. Intell. Tools 17(01), 71–85 (2008)
Pandis, N.: Comparison of 2 means for matched observations (paired t test) and t test assumptions. Am. J. Orthod. Dentofac. Orthop. 148(3), 515–516 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Abdelkhalek, R., Boukhris, I., Elouedi, Z. (2017). Assessing Items Reliability for Collaborative Filtering Within the Belief Function Framework. In: Jallouli, R., Zaïane, O., Bach Tobji, M., Srarfi Tabbane, R., Nijholt, A. (eds) Digital Economy. Emerging Technologies and Business Innovation. ICDEc 2017. Lecture Notes in Business Information Processing, vol 290. Springer, Cham. https://doi.org/10.1007/978-3-319-62737-3_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-62737-3_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62736-6
Online ISBN: 978-3-319-62737-3
eBook Packages: Computer ScienceComputer Science (R0)