Abstract
Time is an important factor that needs to be considered in information retrieval. Often queries raised to search engines may have temporal intention, or the search results that the user interests are time-dependent. In this paper, we deal with one type of temporal queries – implicitly temporal queries. Those queries do not contain explicitly temporal expressions, but the user’s information need is related to time. For a given query, we analyze its temporal intention and set up two linear combination models. One of them is based on the language modeling, and the other is based on the metric space model. Both of them consider both aspects of content and time to rank all the documents involved. Experiment results with the dataset that was used in the Temporal Information Access task of NTCIR-11 show that our approaches are effective.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Metzler, D., Jones, R., Peng, F., Zhang, R.: Improving search relevance for implicitly temporal queries. In: Proceedings of SIGIR, pp. 700–701 (2009)
Kanhabua, N., Nørvåg, K.: Determining time of queries for re-ranking search results. In: Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 261–272. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15464-5_27
Gupta, D., Berberich, K.: Identifying time intervals of interest to queries. In: Proceedings of CIKM, pp. 1835–1838 (2014)
Alonso, O., Strötgen, J., Baeza-Yates, R.A., Gertz, M.: Temporal information retrieval: challenges and opportunities. TWAW 11, 1–8 (2011)
Berberich, K., Bedathur, S., Alonso, O., Weikum, G.: A language modeling approach for temporal information needs. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 13–25. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12275-0_5
Jones, R., Diaz, F.: Temporal profiles of queries. ACM Trans. Inf. Syst. 25(3), 14 (2007)
Kanhabua, N., Nørvåg, K.: Learning to rank search results for time-sensitive queries. In: Proceedings of CIKM, pp. 2463–2466 (2012)
Chang, P.T., Huang, Y.C., Yang, C.L., Lin, S.D., Cheng, P.J.: Learning-based time-sensitive re-ranking for web search. In: Proceedings of SIGIR, pp. 1101–1102 (2012)
Kanhabua, N., Ngoc N.T., Nejdl, W., Wolfgang, N.: Learning to detect event-related queries for web search. In: Proceedings of WWW, pp. 1339–1344 (2015)
Shokouhi, M., Radinsky, K.: Time-sensitive query auto-completion. In: Proceedings of SIGIR, pp. 601–610 (2012)
Dakka, W., Gravano, L., Ipeirotis, P.: Answering general time-sensitive queries. IEEE Trans. Knowl. Data Eng. 24(2), 220–235 (2012)
Lin, S., Jin, P., Zhao, X., Yue, L.: Exploiting temporal information in Web search. Expert Syst. Appl. 41(2), 331–341 (2014)
Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - a crystallization point for the Web of Data. J. Web Sem. 7(3), 154–165 (2009)
Brucato, M., Montesi, D.: Metric spaces for temporal information retrieval. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C., de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 385–397. Springer, Cham (2014). doi:10.1007/978-3-319-06028-6_32
Joho, H., Jatowt, A., Blanco, R.: NTCIR Temporalia: a test collection for temporal information access research. In: Proceedings of WWW (Companion Volume), pp. 845–850 (2014)
Acknowledgement
This research has been partially supported by Natural Science Foundation of Jiangsu Province (number BK20171303).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Wang, J., Wu, S. (2017). Information Retrieval with Implicitly Temporal Queries. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2017. IDEAL 2017. Lecture Notes in Computer Science(), vol 10585. Springer, Cham. https://doi.org/10.1007/978-3-319-68935-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-68935-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68934-0
Online ISBN: 978-3-319-68935-7
eBook Packages: Computer ScienceComputer Science (R0)