[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Metric Spaces for Temporal Information Retrieval

  • Conference paper
Advances in Information Retrieval (ECIR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8416))

Included in the following conference series:

Abstract

Documents and queries are rich in temporal features, both at the meta-level and at the content-level. We exploit this information to define temporal scope similarities between documents and queries in metric spaces. Our experiments show that the proposed metrics can be very effective for modeling the relevance for different search tasks, and provide insights into an inherent asymmetry in temporal query semantics. Moreover, we propose a simple ranking model that combines the temporal scope similarity with traditional keyword similarities. We experimentally show that it is not worse than traditional keyword-based rankings for non-temporal queries, and that it improves the overall effectiveness for time-based queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alonso, O., Strötgen, J., Baeza-Yates, R., Gertz, M.: Temporal information retrieval: Challenges and opportunities. In: 1st Temporal Web Analytics Workshop at WWW, pp. 1–8 (2011)

    Google Scholar 

  2. Jones, R., Diaz, F.: Temporal profiles of queries. ACM Transactions on Information Systems (TOIS) 25(3) (2007)

    Google Scholar 

  3. Campos, R., Dias, G., Jorge, A.M., Nunes, C.: Enriching temporal query understanding through date identification: how to tag implicit temporal queries? In: Proceedings of the 2nd Temporal Web Analytics Workshop, pp. 41–48. ACM (2012)

    Google Scholar 

  4. Berberich, K., Bedathur, S., Alonso, O., Weikum, G.: A language modeling approach for temporal information needs. In: Advances in Information Retrieval, pp. 13–25 (2010)

    Google Scholar 

  5. Nunes, S., Ribeiro, C., David, G.: Use of temporal expressions in web search. In: Advances in Information Retrieval, pp. 580–584 (2008)

    Google Scholar 

  6. Snodgrass, R.T.: Temporal databases. IEEE Computer 19, 35–42 (1986)

    Article  Google Scholar 

  7. Li, X., Croft, W.: Time-based language models. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, pp. 469–475. ACM (2003)

    Google Scholar 

  8. Alonso, O., Gertz, M., Baeza-Yates, R.: On the value of temporal information in information retrieval. In: ACM SIGIR Forum, vol. 41, pp. 35–41. ACM (2007)

    Google Scholar 

  9. Verhagen, M., Gaizauskas, R., Schilder, F., Hepple, M., Moszkowicz, J., Pustejovsky, J.: The tempeval challenge: identifying temporal relations in text. Language Resources and Evaluation 43(2), 161–179 (2009)

    Article  Google Scholar 

  10. Strötgen, J., Gertz, M.: Heideltime: High quality rule-based extraction and normalization of temporal expressions. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 321–324. Association for Computational Linguistics, Uppsala (2010)

    Google Scholar 

  11. Llorens, H., Derczynski, L., Gaizauskas, R., Saquete, E.: Timen: An open temporal expression normalisation resource. In: Proceedings of the 7th International Conference on Language Resources and Evaluation (2012)

    Google Scholar 

  12. Metzler, D., Jones, R., Peng, F., Zhang, R.: Improving search relevance for implicitly temporal queries. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 700–701. ACM (2009)

    Google Scholar 

  13. Kanhabua, N., Nørvåg, K.: Determining time of queries for re-ranking search results. In: Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 261–272. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Gey, F., Larson, R., Kando, N., Machado, J., Sakai, T.: Ntcir-geotime overview: Evaluating geographic and temporal search. In: NTCIR, vol. 10, pp. 147–153 (2010)

    Google Scholar 

  15. Diaz, F., Dumais, S., Efron, M., Radinsky, K., de Rijke, M., Shokouhi, M.: Sigir 2013 workshop on time aware information access (# taia2013). In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1137–1137. ACM (2013)

    Google Scholar 

  16. Nunes, S.: Exploring temporal evidence in web information retrieval. In: Future Directions in Information Access (FDIA) (2007)

    Google Scholar 

  17. Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Communications of the ACM 18(11), 613–620 (1975)

    Article  MATH  Google Scholar 

  18. Sibson, R.: Slink: an optimally efficient algorithm for the single-link cluster method. The Computer Journal 16(1), 30–34 (1973)

    Article  MathSciNet  Google Scholar 

  19. Black, P.E.: Manhattan distance. Dictionary of algorithms and data structures. US National Institute of Standards and Technology (2006)

    Google Scholar 

  20. Shepard, R.N., et al.: Toward a universal law of generalization for psychological science. Science 237(4820), 1317–1323 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pustejovsky, J., Castano, J., Ingria, R., Saurí, R., Gaizauskas, R., Setzer, A., Katz, G., Radev, D.: TimeML: Robust specification of event and temporal expressions in text. In: Mani, I., Pustejovsky, J., Gaizauskas, R. (eds.) The Language of time: a Reader. Oxford University Press (2005)

    Google Scholar 

  22. Sakai, T.: Evaluating information retrieval metrics based on bootstrap hypothesis tests. Information and Media Technologies 2(4), 1062–1079 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Brucato, M., Montesi, D. (2014). Metric Spaces for Temporal Information Retrieval. In: de Rijke, M., et al. Advances in Information Retrieval. ECIR 2014. Lecture Notes in Computer Science, vol 8416. Springer, Cham. https://doi.org/10.1007/978-3-319-06028-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06028-6_32

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06027-9

  • Online ISBN: 978-3-319-06028-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics