Abstract
In this article we develop in the case of triangulated meshes the notion of normal cycle as a dissimilarity measure introduced in [13]. Our construction is based on the definition of kernel metrics on the space of normal cycles which take explicit expressions in a discrete setting. We derive the computational setting for discrete surfaces, using the Large Deformation Diffeomorphic Metric Mapping framework as model for deformations. We present experiments on real data and compare with the varifolds approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arguillère, S., Trélat, E., Trouvé, A., Younès, L.: Shape deformation analysis from the optimal control viewpoint. Journal de Mathématiques Pures et Appliquées 104, 139–178 (2015)
Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vision 61(2), 139–157 (2005)
Bruveris, M., Risser, L., Vialard, F.X.: Mixture of kernels and iterated semidirect product of diffeomorphisms groups. Multiscale Modeling Simul. 10(4), 1344–1368 (2012)
Charon, N.: Analysis of geometric and fshapes with extension of currents. Application to registration and atlas estimation. Ph.D. thesis, ÉNS Cachan (2013)
Durrleman, S.: Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution. Ph.D. thesis, Université Nice, Sophia Antipolis (2010)
Federer, H.: Curvature measures. Trans. Amer. Maths. Soc. 93, 418–491 (1959)
Glaunès, J.: Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l’anatomie numérique. Ph.D. thesis, Université Paris 13 (2005)
Glaunès, J., Qiu, A., Miller, M., Younes, L.: Large deformation diffeomorphic metric curve mapping. Int. J. Comput. Vision 80(3), 317–336 (2008)
Lee, S., Charon, N., Charlier, B., Popuri, K., Lebed, E., Sarunic, M., Trouvé, A., Beg, M.: Atlas-based shape analysis and classification of retinal optical coherence tomography images using the fshape framework. Med. Image Anal. 35, 570–581 (2016)
Lee, S., Han, S.X., Young, M., Beg, M.F., Sarunic, M.V., Mackenzie, P.J.: Optic nerve head and peripapillary morphometrics in myopic glaucoma. Invest. Ophthalmol. Vis. Sci. 55(7), 4378 (2014)
Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1–3), 503–528 (1989)
Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)
Roussillon, P., Glaunès, J.: Kernel metrics on normal cycles and application to curve matching. SIAM J. Imaging Sci. 9, 1991–2038 (2016)
Vaillant, M., Glaunès, J.: Surface matching via currents. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg (2005). doi:10.1007/11505730_32
Zähle, M.: Curvatures and currents for unions of set with positive reach. Geom. Dedicata. 23, 155–171 (1987)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Roussillon, P., Glaunès, J.A. (2017). Surface Matching Using Normal Cycles. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)