Abstract
The Gromov–Hausdorff distance of two compact metric spaces is a measure for how far the spaces are from being isometric and has been extensively studied in the field of metric geometry. In recent years, a lot of attention has been devoted to computational aspects of the Gromov–Hausdorff distance. One of the most prominent applications is the problem of shape matching, where the goal is to decide whether two shapes given as polygonal meshes are equivalent under certain invariances. Therefore, many methods have been proposed which heuristically estimate the Gromov–Hausdorff distance of metric spaces induced by the shapes. However, the computational complexity of computing the Gromov–Hausdorff distance has not yet been thoroughly investigated. We show that—under standard complexity theoretic assumptions—determining the Gromov–Hausdorff distance of two finite metric spaces cannot be approximated within any reasonable bound in polynomial time. Furthermore, we discover attributes of metric spaces which have a major impact on the complexity of an instance. This enables us to develop an approximation algorithm which is fixed parameter tractable with respect to corresponding parameters.
Similar content being viewed by others
References
Bérard, P., Besson, G., Gallot, S.: Embedding Riemannian manifolds by their heat kernel. Geom. Funct. Anal. 4(4), 373–398 (1994)
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of isometry-invariant distances between surfaces. SIAM J. Sci. Comput. 28(5), 1812–1836 (2006)
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Monographs in Computer Science. Springer, New York (2008)
Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov–Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. Int. J. Comput. Vis. 89(2), 266–286 (2010)
Bronstein, A.M., Bronstein, M.M., Spira, A., Kimmel, R.: Face recognition from facial surface metric. In: Pajdla, T., Matas, J. (eds.) Computer Vision–ECCV 2004, Part II. Lecture Notes in Computer Science, pp. 225–237. Springer, Berlin (2004)
Burago, D., Burago, Yu., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001)
Burkard, R.E.: Quadratic assignment problems. Eur. J. Oper. Res. 15(3), 283–289 (1984)
Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010)
Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)
Dattorro, J.: Convex Optimization & Euclidean Distance Geometry. Meboo Publishing USA, Palo Alto (2005)
Diestel, R.: Graph Theory, Graduate Texts in Mathematics, vol. 173, 5th edn. Springer, Heidelberg (2016)
Elad, A., Kimmel, R.: Bending invariant representations for surfaces. In: Proceedings CVPR’01, vol. 1, pp. 168–174. IEEE, Los Alamitos (2001)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. A Series of Books in the Mathematical Sciences. W.H. Freeman & Co., San Francisco (1979)
Hamza, A.B., Krim, H.: Discrete Geometry for Computer Imagery. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) Geodesic Object Representation and Recognition. Lecture Notes in Computer Science, vol. 2886, pp. 378–387. Springer, Berlin (2003)
Håstad, J.: Clique is hard to approximate within \(n^{1-\varepsilon }\). Acta Math. 182(1), 105–142 (1999)
Hightower, J., Borriello, G.: Location systems for ubiquitous computing. IEEE Comput. 34(8), 57–66 (2001)
Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings SIGGRAPH’01, pp. 203–212. ACM, New York (2001)
Huang, Q.-X., Adams, B., Wicke, M., Guibas, L.J.: Non-rigid registration under isometric deformations. Comput. Graph. Forum 27(5), 1449–1457 (2008)
Indyk, P.: Tutorial: algorithmic applications of low-distortion geometric embeddings. In: Proceedings FOCS’42, pp. 10–33. IEEE, Washington (2001)
Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its Structural Complexity. Progress in Theoretical Computer Science. Birkhäuser, Boston (1993)
Lafon, S.S.: Diffusion maps and geometric harmonics. PhD Thesis, Yale University, New Haven (2004). https://sites.google.com/site/stefansresearchpapers/home/dissertation.pdf
Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)
Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, New York (2002)
Mémoli, F., Sapiro, G.: Comparing point clouds. In: Scopigno, R., Zorin, D. (eds.) Eurographics Symposium on Geometry Processing, pp. 32–40. Graz University of Technology, The Eurographics Association (2004)
Mémoli, F.: On the use of Gromov–Hausdorff distances for shape comparison. In: Botsch, M., et al. (eds.) Eurographics Symposium on Point-Based Graphics, pp. 81–90. Graz University of Technology, The Eurographics Association (2007)
Mémoli, F.: Gromov–Hausdorff distances in Euclidean spaces. In: Proceedings CVPRW’08, pp. 1–8. IEEE, Los Alamitos (2008)
Mémoli, F.: Some properties of Gromov–Hausdorff distances. Discret Comput. Geom. 48(2), 416–440 (2012)
Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5(3), 313–347 (2005)
Nagendran, U.: Methods of using wireless geolocation to customize content and delivery of information to wireless communication devices. Patent US6731940 (2004)
Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.J.: One point isometric matching with the heat kernel. Comput. Graph. Forum 29(5), 1555–1564 (2010)
Papadimitriou, C., Safra, S.: The complexity of low-distortion embeddings between point sets. In: Proceedings SODA, pp. 112–118. ACM, New York (2005)
Patwari, N., Hero, A., Perkins, M., Correal, N., O’Dea, R.: Relative location estimation in wireless sensor networks. IEEE Trans. Signal Process 51(8), 2137–2148 (2003)
Raviv, D., Dubrovina, A., Kimmel, R.: Hierarchical matching of non-rigid shapes. In: Bruckstein, A.M., et al. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 6667, pp. 604–615. Springer, Berlin (2012)
Sahillioğlu, Y., Yemez, Y.: Coarse-to-fine combinatorial matching for dense isometric shape correspondence. Comput. Graph. Forum 30(5), 1461–1470 (2011)
Schmiedl, F.: Shape matching and mesh segmentation: mathematical analysis, algorithms and an application in automated manufacturing. PhD Thesis, Technische Universität München, München (2014). http://mediatum.ub.tum.de/?id=1231885
Swofford, D.L., Olsen, G.J.: Phylogeny reconstruction. In: Hillis, D.M., Moritz, C. (eds.) Molecular Systematics, pp. 411–501. Sinauer Associates, Sunderland (1990)
Tevs, A., Berner, A., Wand, M., Ihrke, I., Seidel, H.-P.: Intrinsic shape matching by planned landmark sampling. Comput. Graph. Forum 30(2), 543–552 (2011)
Thompson, R.B.: Global positioning system: the mathematics of GPS receivers. Math. Mag. 71(4), 260–269 (1998)
Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)
Wolfson, E., Schwartz, E.L.: Computing minimal distances on polyhedral surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 11(9), 1001–1005 (1989)
Acknowledgements
We would like to express our gratitude to the anonymous reviewers for their many helpful suggestions and comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: Kenneth Clarkson
Rights and permissions
About this article
Cite this article
Schmiedl, F. Computational Aspects of the Gromov–Hausdorff Distance and its Application in Non-rigid Shape Matching. Discrete Comput Geom 57, 854–880 (2017). https://doi.org/10.1007/s00454-017-9889-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-017-9889-4