[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Computational Aspects of the Gromov–Hausdorff Distance and its Application in Non-rigid Shape Matching

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

The Gromov–Hausdorff distance of two compact metric spaces is a measure for how far the spaces are from being isometric and has been extensively studied in the field of metric geometry. In recent years, a lot of attention has been devoted to computational aspects of the Gromov–Hausdorff distance. One of the most prominent applications is the problem of shape matching, where the goal is to decide whether two shapes given as polygonal meshes are equivalent under certain invariances. Therefore, many methods have been proposed which heuristically estimate the Gromov–Hausdorff distance of metric spaces induced by the shapes. However, the computational complexity of computing the Gromov–Hausdorff distance has not yet been thoroughly investigated. We show that—under standard complexity theoretic assumptions—determining the Gromov–Hausdorff distance of two finite metric spaces cannot be approximated within any reasonable bound in polynomial time. Furthermore, we discover attributes of metric spaces which have a major impact on the complexity of an instance. This enables us to develop an approximation algorithm which is fixed parameter tractable with respect to corresponding parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bérard, P., Besson, G., Gallot, S.: Embedding Riemannian manifolds by their heat kernel. Geom. Funct. Anal. 4(4), 373–398 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of isometry-invariant distances between surfaces. SIAM J. Sci. Comput. 28(5), 1812–1836 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Monographs in Computer Science. Springer, New York (2008)

    MATH  Google Scholar 

  4. Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov–Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. Int. J. Comput. Vis. 89(2), 266–286 (2010)

    Article  Google Scholar 

  5. Bronstein, A.M., Bronstein, M.M., Spira, A., Kimmel, R.: Face recognition from facial surface metric. In: Pajdla, T., Matas, J. (eds.) Computer Vision–ECCV 2004, Part II. Lecture Notes in Computer Science, pp. 225–237. Springer, Berlin (2004)

    Chapter  Google Scholar 

  6. Burago, D., Burago, Yu., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  7. Burkard, R.E.: Quadratic assignment problems. Eur. J. Oper. Res. 15(3), 283–289 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010)

    Article  MathSciNet  Google Scholar 

  9. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dattorro, J.: Convex Optimization & Euclidean Distance Geometry. Meboo Publishing USA, Palo Alto (2005)

    MATH  Google Scholar 

  11. Diestel, R.: Graph Theory, Graduate Texts in Mathematics, vol. 173, 5th edn. Springer, Heidelberg (2016)

    Google Scholar 

  12. Elad, A., Kimmel, R.: Bending invariant representations for surfaces. In: Proceedings CVPR’01, vol. 1, pp. 168–174. IEEE, Los Alamitos (2001)

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. A Series of Books in the Mathematical Sciences. W.H. Freeman & Co., San Francisco (1979)

    MATH  Google Scholar 

  14. Hamza, A.B., Krim, H.: Discrete Geometry for Computer Imagery. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) Geodesic Object Representation and Recognition. Lecture Notes in Computer Science, vol. 2886, pp. 378–387. Springer, Berlin (2003)

    Google Scholar 

  15. Håstad, J.: Clique is hard to approximate within \(n^{1-\varepsilon }\). Acta Math. 182(1), 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  16. Hightower, J., Borriello, G.: Location systems for ubiquitous computing. IEEE Comput. 34(8), 57–66 (2001)

    Article  Google Scholar 

  17. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings SIGGRAPH’01, pp. 203–212. ACM, New York (2001)

  18. Huang, Q.-X., Adams, B., Wicke, M., Guibas, L.J.: Non-rigid registration under isometric deformations. Comput. Graph. Forum 27(5), 1449–1457 (2008)

    Article  Google Scholar 

  19. Indyk, P.: Tutorial: algorithmic applications of low-distortion geometric embeddings. In: Proceedings FOCS’42, pp. 10–33. IEEE, Washington (2001)

  20. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its Structural Complexity. Progress in Theoretical Computer Science. Birkhäuser, Boston (1993)

    Book  MATH  Google Scholar 

  21. Lafon, S.S.: Diffusion maps and geometric harmonics. PhD Thesis, Yale University, New Haven (2004). https://sites.google.com/site/stefansresearchpapers/home/dissertation.pdf

  22. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)

    Article  Google Scholar 

  23. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, New York (2002)

    Book  Google Scholar 

  24. Mémoli, F., Sapiro, G.: Comparing point clouds. In: Scopigno, R., Zorin, D. (eds.) Eurographics Symposium on Geometry Processing, pp. 32–40. Graz University of Technology, The Eurographics Association (2004)

  25. Mémoli, F.: On the use of Gromov–Hausdorff distances for shape comparison. In: Botsch, M., et al. (eds.) Eurographics Symposium on Point-Based Graphics, pp. 81–90. Graz University of Technology, The Eurographics Association (2007)

  26. Mémoli, F.: Gromov–Hausdorff distances in Euclidean spaces. In: Proceedings CVPRW’08, pp. 1–8. IEEE, Los Alamitos (2008)

  27. Mémoli, F.: Some properties of Gromov–Hausdorff distances. Discret Comput. Geom. 48(2), 416–440 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5(3), 313–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nagendran, U.: Methods of using wireless geolocation to customize content and delivery of information to wireless communication devices. Patent US6731940 (2004)

  30. Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.J.: One point isometric matching with the heat kernel. Comput. Graph. Forum 29(5), 1555–1564 (2010)

    Article  Google Scholar 

  31. Papadimitriou, C., Safra, S.: The complexity of low-distortion embeddings between point sets. In: Proceedings SODA, pp. 112–118. ACM, New York (2005)

  32. Patwari, N., Hero, A., Perkins, M., Correal, N., O’Dea, R.: Relative location estimation in wireless sensor networks. IEEE Trans. Signal Process 51(8), 2137–2148 (2003)

    Article  Google Scholar 

  33. Raviv, D., Dubrovina, A., Kimmel, R.: Hierarchical matching of non-rigid shapes. In: Bruckstein, A.M., et al. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 6667, pp. 604–615. Springer, Berlin (2012)

  34. Sahillioğlu, Y., Yemez, Y.: Coarse-to-fine combinatorial matching for dense isometric shape correspondence. Comput. Graph. Forum 30(5), 1461–1470 (2011)

    Article  Google Scholar 

  35. Schmiedl, F.: Shape matching and mesh segmentation: mathematical analysis, algorithms and an application in automated manufacturing. PhD Thesis, Technische Universität München, München (2014). http://mediatum.ub.tum.de/?id=1231885

  36. Swofford, D.L., Olsen, G.J.: Phylogeny reconstruction. In: Hillis, D.M., Moritz, C. (eds.) Molecular Systematics, pp. 411–501. Sinauer Associates, Sunderland (1990)

    Google Scholar 

  37. Tevs, A., Berner, A., Wand, M., Ihrke, I., Seidel, H.-P.: Intrinsic shape matching by planned landmark sampling. Comput. Graph. Forum 30(2), 543–552 (2011)

    Article  Google Scholar 

  38. Thompson, R.B.: Global positioning system: the mathematics of GPS receivers. Math. Mag. 71(4), 260–269 (1998)

    Article  MathSciNet  Google Scholar 

  39. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

    MATH  Google Scholar 

  40. Wolfson, E., Schwartz, E.L.: Computing minimal distances on polyhedral surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 11(9), 1001–1005 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the anonymous reviewers for their many helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Schmiedl.

Additional information

Editor in Charge: Kenneth Clarkson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmiedl, F. Computational Aspects of the Gromov–Hausdorff Distance and its Application in Non-rigid Shape Matching. Discrete Comput Geom 57, 854–880 (2017). https://doi.org/10.1007/s00454-017-9889-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-017-9889-4

Keywords

Mathematics Subject Classification

Navigation