Abstract
In recent research, decision diagrams have proved useful for the solution of discrete optimization problems. Their success relies on the use of relaxed decision diagrams to obtain bounds on the optimal value, either through a node merger or a node splitting mechanism. We investigate the potential of node merger to provide bounds for dynamic programming models that do not otherwise have a practical relaxation, in particular the job sequencing problem with time windows and state-dependent processing times. We prove general conditions under which a node merger operation yields a valid relaxation and apply them to job sequencing. Computational experiments show that, surprisingly, relaxed diagrams prove the optimal value when their size is only a small fraction of the size of an exact diagram. On the other hand, a relaxed diagram of fixed size ceases to provide a useful bound as the instances scale up.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Problems with nonseparable objective functions can also be represented, as described in [21], but to simplify exposition we omit this possibility.
References
Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. C–27, 509–516 (1978)
Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7_11
Baldacci, R., Mingozzi, A., Roberti, R.: New state-space relaxations for solving the traveling salesman problem with time windows. INFORMS J. Comput. 24(3), 356–371 (2012)
Becker, B., Behle, M., Eisenbrand, F., Wimmer, R.: BDDs in a branch and cut framework. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 452–463. Springer, Heidelberg (2005). doi:10.1007/11427186_39
Behle, M., Eisenbrand, F.: 0/1 vertex and facet enumeration with BDDs. In: Proceedings of the Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 158–165. SIAM (2007)
Bergman, D., Ciré, A.A., van Hoeve, W.-J., Hooker, J.N.: Variable ordering for the application of BDDs to the maximum independent set problem. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 34–49. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29828-8_3
Bergman, D., Ciré, A.A., van Hoeve, W.J., Hooker, J.N.: Optimization bounds from binary decision diagrams. INFORMS J. Comput. 26, 253–268 (2013)
Bergman, D., Ciré, A.A., van Hoeve, W.J., Hooker, J.N.: Decision Diagrams for Optimization. Springer, Heidelberg (2016). doi:10.1007/978-3-319-42849-9
Bergman, D., Ciré, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with binary decision diagrams. INFORMS J. Comput. 28, 47–66 (2016)
Bergman, D., Ciré, A.A., van Hoeve, W.J.: Lagrangian bounds from decision diagrams. Constraints 20, 346–361 (2015)
Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21311-3_5
Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. C–35, 677–691 (1986)
Christofides, N., Mingozzi, A., Toth, P.: State-space relaxation procedures for the computation of bounds to routing problems. Networks 11(2), 145–164 (1981)
Ciré, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing problems. Oper. Res. 61, 1411–1428 (2013)
Hadžić, T., Hooker, J.N.: Postoptimality analysis for integer programming using binary decision diagrams. Carnegie Mellon University, Technical report (2006)
Hadžić, T., Hooker, J.N.: Cost-bounded binary decision diagrams for 0-1 programming. In: Hentenryck, P., Wolsey, L. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 84–98. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72397-4_7
Hadžić, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85958-1_30
Hadžić, T., Hooker, J.N., Tiedemann, P.: Propagating separable equalities in an MDD store. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 318–322. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68155-7_30
Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15396-9_23
Hooker, J.N.: Discrete global optimization with binary decision diagrams. In: GICOLAG 2006, Vienna, Austria, December 2006
Hooker, J.N.: Decision diagrams and dynamic programming. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 94–110. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38171-3_7
Hu, A.J.: Techniques for efficient formal verification using binary decision diagrams. Thesis CS-TR-95-1561, Stanford University, Department of Computer Science, December 1995
Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell Syst. Tech. J. 38, 985–999 (1959)
Loekito, E., Bailey, J., Pei, J.: A binary decision diagram based approach for mining frequent subsequences. Knowl. Inf. Syst. 24(2), 235–268 (2010)
Mingozzi, A.: State space relaxation and search strategies in dynamic programming. In: Koenig, S., Holte, R.C. (eds.) SARA 2002. LNCS, vol. 2371, p. 51. Springer, Heidelberg (2002). doi:10.1007/3-540-45622-8_4
Righini, G., Salani, M.: New dynamic programming algorithms for the resource constrained shortest path problem. Networks 51, 155–170 (2008)
Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Hooker, J.N. (2017). Job Sequencing Bounds from Decision Diagrams. In: Beck, J. (eds) Principles and Practice of Constraint Programming. CP 2017. Lecture Notes in Computer Science(), vol 10416. Springer, Cham. https://doi.org/10.1007/978-3-319-66158-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-66158-2_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66157-5
Online ISBN: 978-3-319-66158-2
eBook Packages: Computer ScienceComputer Science (R0)