[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

We study the application of limited-width MDDs (multi-valued decision diagrams) as discrete relaxations for combinatorial optimization problems. These relaxations are used for the purpose of generating lower bounds. We introduce a new compilation method for constructing such MDDs, as well as algorithms that manipulate the MDDs to obtain stronger relaxations and hence provide stronger lower bounds. We apply our methodology to set covering problems, and evaluate the strength of MDD relaxations to relaxations based on linear programming. Our experimental results indicate that the MDD relaxation is particularly effective on structured problems, being able to outperform state-of-the-art integer programming technology by several orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers C-27, 509–516 (1978)

    Article  Google Scholar 

  2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A Constraint Store Based on Multivalued Decision Diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Becker, B., Behle, M., Eisenbrand, F., Wimmer, R.: BDDs in a branch and cut framework. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 452–463. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Behle, M.: On Threshold BDDs and the Optimal Variable Ordering Problem. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 124–135. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Behle, M., Eisenbrand, F.: 0/1 vertex and facet enumeration with BDDs. In: Proceedings of ALENEX. SIAM, Philadelphia (2007)

    Google Scholar 

  6. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers C-35, 677–691 (1986)

    Article  Google Scholar 

  7. Campos, V., Piñana, E., Martí, R.: Adaptive memory programming for matrix bandwidth minimization. Annals of Operations Research (to appear)

    Google Scholar 

  8. Del Corso, G.M., Manzini, G.: Finding exact solutions to the bandwidth minimization problem. Computing 62(3), 189–203 (1999)

    Article  MathSciNet  Google Scholar 

  9. Feige, U.: Approximating the bandwidth via volume respecting embeddings. J. Comput. Syst. Sci. 60(3), 510–539 (2000)

    Article  MathSciNet  Google Scholar 

  10. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15, 835–855 (1965)

    Article  MathSciNet  Google Scholar 

  11. Gurari, E.M., Sudborough, I.H.: Improved dynamic programming algorithms for bandwidth minimization and the mincut linear arrangement problem. ALGORITHMS: Journal of Algorithms 5 (1984)

    Google Scholar 

  12. Hadzic, T., Hooker, J.N.: Postoptimality analysis for integer programming using binary decision diagrams, presented at GICOLAG workshop (Global Optimization: Integrating Convexity, Optimization, Logic Programming, and Computational Algebraic Geometry), Vienna. Technical report, Carnegie Mellon University (2006)

    Google Scholar 

  13. Hadzic, T., Hooker, J.N.: Cost-bounded binary decision diagrams for 0-1 programming. Technical report, Carnegie Mellon University (2007)

    Google Scholar 

  14. Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate Compilation of Constraints into Multivalued Decision Diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A Systematic Approach to MDD-Based Constraint Programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Hooker, J.N.: Integrated Methods for Optimization. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  17. Hu, A.J.: Techniques for Efficient Formal Verification Using Binary Decision Diagrams. Technical Report CS-TR-95-1561, Stanford University, Department of Computer Science (1995)

    Google Scholar 

  18. Kam, T., Villa, T., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Multi-valued decision diagrams: Theory and applications. International Journal on Multiple-Valued Logic 4, 9–62 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell Systems Technical Journal 38, 985–999 (1959)

    Article  MathSciNet  Google Scholar 

  20. Martí, R., Campos, V., Piñana, E.: A branch and bound algorithm for the matrix bandwidth minimization. European Journal of Operational Research 186(2), 513–528 (2008)

    Article  MathSciNet  Google Scholar 

  21. Martí, R., Laguna, M., Glover, F., Campos, V.: Reducing the bandwidth of a sparse matrix with tabu search. European Journal of Operational Research 135(2), 450–459 (2001)

    Article  MathSciNet  Google Scholar 

  22. Piñana, E., Plana, I., Campos, V., Martí, R.: GRASP and path relinking for the matrix bandwidth minimization. European Journal of Operational Research 153(1), 200–210 (2004)

    Article  MathSciNet  Google Scholar 

  23. Saxe, J.: Dynamic programming algorithms for recognizing small-bandwidth graphs in polynomial time. SIAM J. Algebraic Discrete Meth. 1, 363–369 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bergman, D., van Hoeve, WJ., Hooker, J.N. (2011). Manipulating MDD Relaxations for Combinatorial Optimization. In: Achterberg, T., Beck, J.C. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2011. Lecture Notes in Computer Science, vol 6697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21311-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21311-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21310-6

  • Online ISBN: 978-3-642-21311-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics