Abstract
In computer vision many tasks have achieved state-of-the-art performance using convolutional neural networks (CNNs) [11], typically at the cost of massive computational complexity. A key problem of the training is the low speed of the progress. It may cost much time especially when computational resources are limited. The focus of this paper is speeding up the training progress based on fine-tuned backpropagation progress. More specifically, we train the CNNs with standard backpropagation firstly. When the feature extraction layers got better features, then we start to block the standard backpropagation in the whole layers, the loss function values only back propagates between fully connected layers. So it can not only save time but also pay more attention to train the classifier to get the same or better result compared with training with standard backpropagation all the time. Comprehensive experiments on JD (https://www.jd.com/) datasets demonstrate significant reduction in computational time, at the cost of negligible loss in accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning-a new frontier in artificial intelligence research [research frontier]. IEEE Comput. Intell. Mag. 5(4), 13–18 (2010)
Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)
Bengio, Y.: Deep learning of representations: looking forward. In: Dediu, A.-H., Martín-Vide, C., Mitkov, R., Truthe, B. (eds.) SLSP 2013. LNCS (LNAI), vol. 7978, pp. 1–37. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39593-2_1
Di, W., Wah, C., Bhardwaj, A., Piramuthu, R., Sundaresan, N.: Style finder: fine-grained clothing style detection and retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 8–13 (2013)
Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Heidelberg (2016). doi:10.1007/978-3-319-46475-6_25
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. Aistats 9, 249–256 (2010)
Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. arXiv preprint arXiv:1405.3866 (2014)
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)
Jiang, X., Pang, Y., Li, X., Pan, J.: Speed up deep neural network based pedestrian detection by sharing features across multi-scale models. Neurocomputing 185, 163–170 (2016)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Le Cun, B.B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems. Citeseer (1990)
Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., Lempitsky, V.: Speeding-up convolutional neural networks using fine-tuned CP-decomposition. arXiv preprint arXiv:1412.6553 (2014)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
LeCun, Y., Kavukcuoglu, K., Farabet, C., et al.: Convolutional networks and applications in vision. In: ISCAS, pp. 253–256 (2010)
Sánchez, J., Perronnin, F.: High-dimensional signature compression for large-scale image classification. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1665–1672. IEEE (2011)
van Doorn, J.: Analysis of deep convolutional neural network architectures (2014)
Wang, L., Yang, Y., Min, M.R., Chakradhar, S.: Accelerating deep neural network training with inconsistent stochastic gradient descent. arXiv preprint arXiv:1603.05544 (2016)
Acknowledgement
This work is supported by National Natural Science Foundation of China (project no. 61300137), Science and Technology Planning Project of Guangdong Province, China (No. 2013B010406004), Tip-top Scientific and Technical Innovative Youth Talents of Guangdong special support program (No. 2015TQ01X633) and Science and Technology Planning Major Project of Guangdong Province (No. 2015A070711001).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Li, Y., Chen, Z., Cai, Y., Huang, D., Li, Q. (2017). Accelerating Convolutional Neural Networks Using Fine-Tuned Backpropagation Progress. In: Bao, Z., Trajcevski, G., Chang, L., Hua, W. (eds) Database Systems for Advanced Applications. DASFAA 2017. Lecture Notes in Computer Science(), vol 10179. Springer, Cham. https://doi.org/10.1007/978-3-319-55705-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-55705-2_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55704-5
Online ISBN: 978-3-319-55705-2
eBook Packages: Computer ScienceComputer Science (R0)