[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Deep Learning of Representations: Looking Forward

  • Conference paper
Statistical Language and Speech Processing (SLSP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7978))

Included in the following conference series:

  • 4968 Accesses

Abstract

Deep learning research aims at discovering learning algorithms that discover multiple levels of distributed representations, with higher levels representing more abstract concepts. Although the study of deep learning has already led to impressive theoretical results, learning algorithms and breakthrough experiments, several challenges lie ahead. This paper proposes to examine some of these challenges, centering on the questions of scaling deep learning algorithms to much larger models and datasets, reducing optimization difficulties due to ill-conditioning or local minima, designing more efficient and powerful inference and sampling procedures, and learning to disentangle the factors of variation underlying the observed data. It also proposes a few forward-looking research directions aimed at overcoming these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alain, G., Bengio, Y.: What regularized auto-encoders learn from the data generating distribution. Tech. Rep. Arxiv report 1211.4246, Université de Montréal (2012)

    Google Scholar 

  2. Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Structured sparsity through convex optimization. Tech. rep., arXiv.1109.2397 (2011)

    Google Scholar 

  3. Bagnell, J.A., Bradley, D.M.: Differentiable sparse coding. In: NIPS 2009, pp. 113–120 (2009)

    Google Scholar 

  4. Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University Press (2011)

    Google Scholar 

  5. Becker, S., Hinton, G.: A self-organizing neural network that discovers surfaces in random-dot stereograms. Nature 355, 161–163 (1992)

    Article  Google Scholar 

  6. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. JMLR 3, 1137–1155 (2003)

    MATH  Google Scholar 

  7. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: NIPS 2006 (2007)

    Google Scholar 

  8. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks 5(2), 157–166 (1994), http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf

    Article  Google Scholar 

  9. Bengio, Y.: Neural net language models. Scholarpedia 3(1) (2008)

    Google Scholar 

  10. Bengio, Y.: Learning deep architectures for AI. Now Publishers (2009)

    Google Scholar 

  11. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: JMLR W&CP: Proc. Unsupervised and Transfer Learning (2011)

    Google Scholar 

  12. Bengio, Y.: Estimating or propagating gradients through stochastic neurons. Tech. Rep. arXiv, Universite de Montreal (to appear, 2013)

    Google Scholar 

  13. Bengio, Y.: Evolving culture vs local minima. In: Kowaliw, T., Bredeche, N., Doursat, R. (eds.) Growing Adaptive Machines: Integrating Development and Learning in Artificial Neural Networks, No. also as ArXiv 1203.2990v1. Springer (2013), http://arxiv.org/abs/1203.2990

  14. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade, 2nd edn. LNCS, vol. 7700, pp. 437–478. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Bengio, Y., Alain, G., Rifai, S.: Implicit density estimation by local moment matching to sample from auto-encoders. Tech. rep., arXiv:1207.0057 (2012)

    Google Scholar 

  16. Bengio, Y., Boulanger-Lewandowski, N., Pascanu, R.: Advances in optimizing recurrent networks. In: ICASSP 2013 (2013)

    Google Scholar 

  17. Bengio, Y., Courville, A., Vincent, P.: Unsupervised feature learning and deep learning: A review and new perspectives. IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI (2013)

    Google Scholar 

  18. Bengio, Y., Delalleau, O., Simard, C.: Decision trees do not generalize to new variations. Computational Intelligence 26(4), 449–467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML 2009 (2009)

    Google Scholar 

  20. Bengio, Y., Mesnil, G., Dauphin, Y., Rifai, S.: Better mixing via deep representations. In: ICML 2013 (2013)

    Google Scholar 

  21. Bergstra, J., Bastien, F., Breuleux, O., Lamblin, P., Pascanu, R., Delalleau, O., Desjardins, G., Warde-Farley, D., Goodfellow, I., Bergeron, A., Bengio, Y.: Theano: Deep learning on gpus with python. In: Big Learn Workshop, NIPS (2011)

    Google Scholar 

  22. Bergstra, J., Bengio, Y.: Slow, decorrelated features for pretraining complex cell-like networks. In: NIPS 2009 (December 2009)

    Google Scholar 

  23. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expression compiler. In: Proceedings of the Python for Scientific Computing Conference, SciPy (2010)

    Google Scholar 

  24. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

    Google Scholar 

  25. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy function for learning with multi-relational data. Machine Learning: Special Issue on Learning Semantics (2013)

    Google Scholar 

  26. Brooke, J.J., Bitko, D., Rosenbaum, T.F., Aeppli, G.: Quantum annealing of a disordered magnet. Tech. Rep. cond-mat/0105238 (May 2001)

    Google Scholar 

  27. Cayton, L.: Algorithms for manifold learning. Tech. Rep. CS2008-0923, UCSD (2005)

    Google Scholar 

  28. Cho, K., Raiko, T., Ilin, A.: Parallel tempering is efficient for learning restricted Boltzmann machines. In: IJCNN 2010 (2010)

    Google Scholar 

  29. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. Tech. rep., arXiv:1202.2745 (2012)

    Google Scholar 

  30. Coates, A., Lee, H., Ng, A.Y.: An analysis of single-layer networks in unsupervised feature learning. In: AISTATS 2011 (2011)

    Google Scholar 

  31. Coates, A., Ng, A.Y.: The importance of encoding versus training with sparse coding and vector quantization. In: ICML 2011 (2011)

    Google Scholar 

  32. Coates, A., Karpathy, A., Ng, A.: Emergence of object-selective features in unsupervised feature learning. In: NIPS 2012 (2012)

    Google Scholar 

  33. Collobert, R., Bengio, Y., Bengio, S.: Scaling large learning problems with hard parallel mixtures. International Journal of Pattern Recognition and Artificial Intelligence 17(3), 349–365 (2003)

    Article  Google Scholar 

  34. Collobert, R., Weston, J.: A unified architecture for natural language processing: Deep neural networks with multitask learning. In: ICML 2008 (2008)

    Google Scholar 

  35. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. Journal of Machine Learning Research 12, 2493–2537 (2011)

    Google Scholar 

  36. Corrado, G.: Deep networks for predicting ad click through rates. In: ICML 2012 Online Advertising Workshop (2012)

    Google Scholar 

  37. Courville, A., Bergstra, J., Bengio, Y.: Unsupervised models of images by spike-and-slab RBMs. In: ICML 2011 (2011)

    Google Scholar 

  38. Dauphin, Y., Bengio, Y.: Big neural networks waste capacity. Tech. Rep. arXiv:1301.3583, Universite de Montreal (2013)

    Google Scholar 

  39. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q., Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang, K., Ng, A.Y.: Large scale distributed deep networks. In: NIPS 2012 (2012)

    Google Scholar 

  40. Deng, L., Li, J., Huang, J.T., Yao, K., Yu, D., Seide, F., Seltzer, M., Zweig, G., He, X., Williams, J., Gong, Y., Acero, A.: Recent advances in deep learning for speech research at Microsoft. In: ICASSP 2013 (2013)

    Google Scholar 

  41. Desjardins, G., Courville, A., Bengio, Y.: Disentangling factors of variation via generative entangling (2012)

    Google Scholar 

  42. Desjardins, G., Courville, A., Bengio, Y., Vincent, P., Delalleau, O.: Tempered Markov chain Monte Carlo for training of restricted Boltzmann machine. In: AISTATS, vol. 9, pp. 145–152 (2010)

    Google Scholar 

  43. Eisner, J.: Learning approximate inference policies for fast prediction. Keynote Talk at ICML Workshop on Inferning: Interactions Between Search and Learning (June 2012)

    Google Scholar 

  44. Frey, B.J., Hinton, G.E., Dayan, P.: Does the wake-sleep algorithm learn good density estimators? In: NIPS 1995, pp. 661–670. MIT Press, Cambridge (1996)

    Google Scholar 

  45. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AISTATS (2011)

    Google Scholar 

  46. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS 2010 (2010)

    Google Scholar 

  47. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: A deep learning approach. In: ICML 2011 (2011)

    Google Scholar 

  48. Goodfellow, I., Courville, A., Bengio, Y.: Spike-and-slab sparse coding for unsupervised feature discovery. In: NIPS Workshop on Challenges in Learning Hierarchical Models (2011)

    Google Scholar 

  49. Goodfellow, I., Courville, A., Bengio, Y.: Large-scale feature learning with spike-and-slab sparse coding. In: ICML 2012(2012)

    Google Scholar 

  50. Goodfellow, I., Le, Q., Saxe, A., Ng, A.: Measuring invariances in deep networks. In: NIPS 2009, pp. 646–654 (2009)

    Google Scholar 

  51. Goodfellow, I.J., Courville, A., Bengio, Y.: Joint training of deep Boltzmann machines for classification. Tech. rep., arXiv:1301.3568 (2013)

    Google Scholar 

  52. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. In: ICML 2013 (2013)

    Google Scholar 

  53. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: Bottou, L., Littman, M. (eds.) Proceedings of the Twenty-seventh International Conference on Machine Learning (ICML 2010). ACM (2010)

    Google Scholar 

  54. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: ICML 2010 (2010)

    Google Scholar 

  55. Grosse, R., Raina, R., Kwong, H., Ng, A.Y.: Shift-invariant sparse coding for audio classification. In: UAI 2007 (2007)

    Google Scholar 

  56. Gulcehre, C., Bengio, Y.: Knowledge matters: Importance of prior information for optimization. Tech. Rep. arXiv:1301.4083, Universite de Montreal (2013)

    Google Scholar 

  57. Gutmann, M., Hyvarinen, A.: Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. In: AISTATS 2010 (2010)

    Google Scholar 

  58. Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., Kadie, C.: Dependency networks for inference, collaborative filtering, and data visualization. Journal of Machine Learning Research 1, 49–75 (2000)

    Google Scholar 

  59. Hinton, G., Deng, L., Dahl, G.E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T., Kingsbury, B.: Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine 29(6), 82–97 (2012)

    Article  Google Scholar 

  60. Hinton, G., Krizhevsky, A., Wang, S.: Transforming auto-encoders. In: ICANN 2011 (2011)

    Google Scholar 

  61. Hinton, G.E., Dayan, P., Frey, B.J., Neal, R.M.: The wake-sleep algorithm for unsupervised neural networks. Science 268, 1158–1161 (1995)

    Article  Google Scholar 

  62. Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Computation 18, 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  63. Hinton, G.E., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  64. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors. Tech. rep., arXiv:1207.0580 (2012)

    Google Scholar 

  65. Hochreiter, S.: Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München (1991), http://www7.informatik.tu-muenchen.de/~Ehochreit

  66. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  67. Hyvärinen, A.: Estimation of non-normalized statistical models using score matching. J. Machine Learning Res. 6 (2005)

    Google Scholar 

  68. Hyvärinen, A., Hoyer, P.: Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces. Neural Computation 12(7), 1705–1720 (2000)

    Article  Google Scholar 

  69. Iba, Y.: Extended ensemble monte carlo. International Journal of Modern Physics C12, 623–656 (2001)

    Article  Google Scholar 

  70. Jaeger, H.: Echo state network. Scholarpedia 2(9), 2330 (2007)

    Article  Google Scholar 

  71. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: ICCV 2009 (2009)

    Google Scholar 

  72. Jenatton, R., Audibert, J.Y., Bach, F.: Structured variable selection with sparsity-inducing norms. Tech. rep., arXiv:0904.3523 (2009)

    Google Scholar 

  73. Kavukcuoglu, K., Ranzato, M., LeCun, Y.: Fast inference in sparse coding algorithms with applications to object recognition. CBLL-TR-2008-12-01, NYU (2008)

    Google Scholar 

  74. Kindermann, R.: Markov Random Fields and Their Applications (Contemporary Mathematics; V. 1). American Mathematical Society (1980)

    Google Scholar 

  75. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  76. Kohonen, T.: Emergence of invariant-feature detectors in the adaptive-subspace self-organizing map. Biological Cybernetics 75, 281–291 (1996), http://dx.doi.org/10.1007/s004220050295 , doi:10.1007/s004220050295

    Article  MATH  Google Scholar 

  77. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: NIPS 2012 (2012)

    Google Scholar 

  78. Kulesza, A., Pereira, F.: Structured learning with approximate inference. In: NIPS 2007 (2008)

    Google Scholar 

  79. Larochelle, H., Bengio, Y.: Classification using discriminative restricted Boltzmann machines. In: ICML 2008 (2008)

    Google Scholar 

  80. Larochelle, H., Mandel, M., Pascanu, R., Bengio, Y.: Learning algorithms for the classification restricted Boltzmann machine. JMLR 13, 643–669 (2012)

    MathSciNet  Google Scholar 

  81. Le, Q., Ranzato, M., Monga, R., Devin, M., Corrado, G., Chen, K., Dean, J., Ng, A.: Building high-level features using large scale unsupervised learning. In: ICML 2012 (2012)

    Google Scholar 

  82. Le Roux, N., Manzagol, P.A., Bengio, Y.: Topmoumoute online natural gradient algorithm. In: NIPS 2007 (2008)

    Google Scholar 

  83. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient based learning applied to document recognition. Proc. IEEE (1998)

    Google Scholar 

  84. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.: Efficient backprop. In: Neural Networks, Tricks of the Trade (1998)

    Google Scholar 

  85. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M.A., Huang, F.J.: A tutorial on energy-based learning. In: Bakir, G., Hofman, T., Scholkopf, B., Smola, A., Taskar, B. (eds.) Predicting Structured Data, pp. 191–246. MIT Press (2006)

    Google Scholar 

  86. Lee, H., Ekanadham, C., Ng, A.: Sparse deep belief net model for visual area V2. In: NIPS 2007 (2008)

    Google Scholar 

  87. Li, Y., Tarlow, D., Zemel, R.: Exploring compositional high order pattern potentials for structured output learning. In: CVPR 2013 (2013)

    Google Scholar 

  88. Luo, H., Carrier, P.L., Courville, A., Bengio, Y.: Texture modeling with convolutional spike-and-slab RBMs and deep extensions. In: AISTATS 2013 (2013)

    Google Scholar 

  89. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: ICML 2009 (2009)

    Google Scholar 

  90. Martens, J.: Deep learning via Hessian-free optimization. In: Bottou, L., Littman, M. (eds.) Proceedings of the Twenty-seventh International Conference on Machine Learning (ICML 2010), pp. 735–742. ACM ( June 2010)

    Google Scholar 

  91. Martens, J., Sutskever, I.: Parallelizable sampling of Markov random fields. In: AISTATS 2010 (2010)

    Google Scholar 

  92. Mesnil, G., Dauphin, Y., Glorot, X., Rifai, S., Bengio, Y., Goodfellow, I., Lavoie, E., Muller, X., Desjardins, G., Warde-Farley, D., Vincent, P., Courville, A., Bergstra, J.: Unsupervised and transfer learning challenge: a deep learning approach. In: JMLR W&CP: Proc. Unsupervised and Transfer Learning, vol. 7 (2011)

    Google Scholar 

  93. Mikolov, T.: Statistical Language Models based on Neural Networks. Ph.D. thesis, Brno University of Technology (2012)

    Google Scholar 

  94. Mnih, V., Larochelle, H., Hinton, G.: Conditional restricted Boltzmann machines for structure output prediction. In: Proc. Conf. on Uncertainty in Artificial Intelligence, UAI (2011)

    Google Scholar 

  95. Montavon, G., Müller, K.-R.: Deep Boltzmann machines and the centering trick. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade, 2nd edn. LNCS, vol. 7700, pp. 621–637. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  96. Murphy, K.P.: Machine Learning: a Probabilistic Perspective. MIT Press, Cambridge (2012)

    Google Scholar 

  97. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML 2010 (2010)

    Google Scholar 

  98. Narayanan, H., Mitter, S.: Sample complexity of testing the manifold hypothesis. In: NIPS 2010 (2010)

    Google Scholar 

  99. Neal, R.M.: Bayesian Learning for Neural Networks. Ph.D. thesis, Dept. of Computer Science, University of Toronto (1994)

    Google Scholar 

  100. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  101. Pascanu, R., Bengio, Y.: On the difficulty of training recurrent neural networks. Tech. Rep. arXiv:1211.5063, Universite de Montreal (2012)

    Google Scholar 

  102. Pascanu, R., Bengio, Y.: Revisiting natural gradient for deep networks. Tech. rep., arXiv:1301.3584 (2013)

    Google Scholar 

  103. Raiko, T., Valpola, H., LeCun, Y.: Deep learning made easier by linear transformations in perceptrons. In: AISTATS 2012 (2012)

    Google Scholar 

  104. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: transfer learning from unlabeled data. In: ICML 2007 (2007)

    Google Scholar 

  105. Raina, R., Madhavan, A., Ng, A.Y.: Large-scale deep unsupervised learning using graphics processors. In: Bottou, L., Littman, M. (eds.) ICML 2009, pp. 873–880. ACM, New York (2009)

    Google Scholar 

  106. Ranzato, M., Poultney, C., Chopra, S., LeCun, Y.: Efficient learning of sparse representations with an energy-based model. In: NIPS 2006 (2007)

    Google Scholar 

  107. Ranzato, M., Boureau, Y.L., LeCun, Y.: Sparse feature learning for deep belief networks. In: NIPS 2007, pp. 1185–1192. MIT Press, Cambridge (2008)

    Google Scholar 

  108. Recht, B., Re, C., Wright, S., Niu, F.: Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In: NIPS 2011 (2011)

    Google Scholar 

  109. Rifai, S., Bengio, Y., Courville, A., Vincent, P., Mirza, M.: Disentangling factors of variation for facial expression recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 808–822. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  110. Rifai, S., Bengio, Y., Dauphin, Y., Vincent, P.: A generative process for sampling contractive auto-encoders. In: ICML 2012 (2012)

    Google Scholar 

  111. Rifai, S., Dauphin, Y., Vincent, P., Bengio, Y., Muller, X.: The manifold tangent classifier. In: NIPS 2011 (2011)

    Google Scholar 

  112. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: Explicit invariance during feature extraction. In: ICML 2011 (2011)

    Google Scholar 

  113. Rose, G., Macready, W.: An introduction to quantum annelaing. Tech. rep., D-Wave Systems (2007)

    Google Scholar 

  114. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  115. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: ICML 2007. pp. 791–798 (2007)

    Google Scholar 

  116. Salakhutdinov, R.: Learning deep Boltzmann machines using adaptive MCMC. In: ICML 2010 (2010)

    Google Scholar 

  117. Salakhutdinov, R.: Learning in Markov random fields using tempered transitions. In: NIPS 2010 (2010)

    Google Scholar 

  118. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. In: AISTATS 2009, pp. 448–455 (2009)

    Google Scholar 

  119. Salakhutdinov, R., Larochelle, H.: Efficient learning of deep Boltzmann machines. In: AISTATS 2010 (2010)

    Google Scholar 

  120. Saul, L.K., Jordan, M.I.: Exploiting tractable substructures in intractable networks. In: NIPS 1995. MIT Press, Cambridge (1996)

    Google Scholar 

  121. Schaul, T., Zhang, S., LeCun, Y.: No More Pesky Learning Rates. Tech. rep., New York University, arxiv 1206.1106 (June 2012), http://arxiv.org/abs/1206.1106

  122. Schraudolph, N.N.: Centering neural network gradient factors. In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 207–226. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  123. Seide, F., Li, G., Yu, D.: Conversational speech transcription using context-dependent deep neural networks. In: Interspeech 2011, pp. 437–440 (2011)

    Google Scholar 

  124. Seide, F., Li, G., Yu, D.: Feature engineering in context-dependent deep neural networks for conversational speech transcription. In: ASRU 2011 (2011)

    Google Scholar 

  125. Sohn, K., Zhou, G., Lee, H.: Learning and selecting features jointly with point-wise gated Boltzmann machines. In: ICML 2013 (2013)

    Google Scholar 

  126. Stoyanov, V., Ropson, A., Eisner, J.: Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure. In: AISTATS 2011 (2011)

    Google Scholar 

  127. Sutskever, I.: Training Recurrent Neural Networks. Ph.D. thesis, CS Dept., U. Toronto (2012)

    Google Scholar 

  128. Swersky, K., Ranzato, M., Buchman, D., Marlin, B., de Freitas, N.: On autoencoders and score matching for energy based models. In: ICML 2011. ACM (2011)

    Google Scholar 

  129. Taylor, G., Hinton, G.: Factored conditional restricted Boltzmann machines for modeling motion style. In: Bottou, L., Littman, M. (eds.) ICML 2009, pp. 1025–1032. ACM (2009)

    Google Scholar 

  130. Taylor, G., Hinton, G.E., Roweis, S.: Modeling human motion using binary latent variables. In: NIPS 2006, pp. 1345–1352. MIT Press, Cambridge (2007)

    Google Scholar 

  131. Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear models. Neural Computation 12(6), 1247–1283 (2000)

    Article  Google Scholar 

  132. Tsianos, K., Lawlor, S., Rabbat, M.: Communication/computation tradeoffs in consensus-based distributed optimization. In: NIPS 2012 (2012)

    Google Scholar 

  133. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  134. Tscher, A., Jahrer, M., Bell, R.M.: The bigchaos solution to the netflix grand prize (2009)

    Google Scholar 

  135. Vincent, P.: A connection between score matching and denoising autoencoders. Neural Computation 23(7), 1661–1674 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  136. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: ICML 2008 (2008)

    Google Scholar 

  137. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient Langevin dynamics. In: ICML 2011, pp. 681–688 (2011)

    Google Scholar 

  138. Weston, J., Ratle, F., Collobert, R.: Deep learning via semi-supervised embedding. In: ICML 2008 (2008)

    Google Scholar 

  139. Wiskott, L., Sejnowski, T.J.: Slow feature analysis: Unsupervised learning of invariances. Neural Computation 14(4), 715–770 (2002)

    Article  MATH  Google Scholar 

  140. Wiskott, L., Sejnowski, T.: Slow feature analysis: Unsupervised learning of invariances. Neural Computation 14(4), 715–770 (2002), http://itb.biologie.hu-berlin.de/~wiskott/Publications/WisSej2002-LearningInvariances-NC.ps.gz

    Article  MATH  Google Scholar 

  141. Yu, D., Wang, S., Deng, L.: Sequential labeling using deep-structured conditional random fields. IEEE Journal of Selected Topics in Signal Processing (December 2010)

    Google Scholar 

  142. Yu, K., Lin, Y., Lafferty, J.: Learning image representations from the pixel level via hierarchical sparse coding. In: CVPR 2011 (2011)

    Google Scholar 

  143. Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks. Tech. rep., New York University, arXiv 1301.3557 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bengio, Y. (2013). Deep Learning of Representations: Looking Forward. In: Dediu, AH., Martín-Vide, C., Mitkov, R., Truthe, B. (eds) Statistical Language and Speech Processing. SLSP 2013. Lecture Notes in Computer Science(), vol 7978. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39593-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39593-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39592-5

  • Online ISBN: 978-3-642-39593-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics