Abstract
3D depth sensors such as LIDARs and RGB-D cameras have become a popular choice for indoor localization and mapping. However, due to the lack of direct frame-to-frame correspondences, the tracking traditionally relies on the iterative closest point technique which does not scale well with the number of points. In this paper, we build on top of more recent and efficient density distribution alignment methods, and notably push the idea towards a highly efficient and reliable solution for full 6DoF motion estimation with only depth information. We propose a divide-and-conquer technique during which the estimation of the rotation and the three degrees of freedom of the translation are all decoupled from one another. The rotation is estimated absolutely and drift-free by exploiting the orthogonal structure in man-made environments. The underlying algorithm is an efficient extension of the mean-shift paradigm to manifold-constrained multiple-mode tracking. Dedicated projections subsequently enable the estimation of the translation through three simple 1D density alignment steps that can be executed in parallel. An extensive evaluation on both simulated and publicly available real datasets comparing several existing methods demonstrates outstanding performance at low computational cost.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bachrach, A., Prentice, S., He, R., Henry, P., Huang, A.S., Krainin, M., Maturana, D., Fox, D., Roy, N.: Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments. Int. J. Rob. Res. 31, 1320–1343 (2012)
Bohren, J., Rusu, R.B., Jones, E.G., Marder-Eppstein, E., Pantofaru, C., Wise, M., Mösenlechner, L., Meeussen, W., Holzer, S.: Towards autonomous robotic butlers: lessons learned with the PR2. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 5568–5575. IEEE (2011)
Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Robotics-DL Tentative, International Society for Optics and Photonics, pp. 586–606 (1992)
Pomerleau, F., Magnenat, S., Colas, F., Liu, M., Siegwart, R.: Tracking a depth camera: parameter exploration for fast ICP. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3824–3829. IEEE (2011)
Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing ICP variants on real-world data sets. Auton. Rob. 34, 133–148 (2013)
Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohi, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 127–136. IEEE (2011)
Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., McDonald, J.: Kintinuous: spatially extended KinectFusion. In: RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras, Sydney, Australia (2012)
Jian, B., Vemuri, B.C.: Robust point set registration using gaussian mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1633–1645 (2011)
Chui, H., Rangarajan, A.: A new algorithm for non-rigid point matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 44–51. IEEE (2000)
Chui, H., Rangarajan, A.: A feature registration framework using mixture models. In: Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 190–197. IEEE (2000)
Tsin, Y., Kanade, T.: A correlation-based approach to robust point set registration. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 558–569. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24672-5_44
Fitzgibbon, A.W.: Robust registration of 2D and 3D point sets. Image Vis. Comput. 21, 1145–1153 (2003)
Yang, J., Li, H., Jia, Y.: Go-ICP: solving 3D registration efficiently and globally optimally. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1457–1464. IEEE (2013)
Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for RGB-D cameras. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 3748–3754. IEEE (2013)
Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2320–2327. IEEE (2011)
Engel, J., Sturm, J., Cremers, D.: Semi-dense visual odometry for a monocular camera. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1449–1456. IEEE (2013)
Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10605-2_54
Schöps, T., Engel, J., Cremers, D.: Semi-dense visual odometry for ar on a smartphone. In: 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 145–150. IEEE (2014)
Kneip, L., Zhou, Y., Li, H.: SDICP: semi-dense tracking based on iterative closest points. In: Xianghua Xie, M.W.J., Tam, G.K.L. (eds.) Proceedings of the British Machine Vision Conference (BMVC), pp. 100.1–100.12. BMVA Press, Guildford (2015)
Weingarten, J., Siegwart, R.: 3D slam using planar segments. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3062–3067. IEEE (2006)
Trevor, A.J., Rogers III, J.G., Christensen, H., et al.: Planar surface slam with 3D and 2D sensors. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3041–3048. IEEE (2012)
Taguchi, Y., Jian, Y.D., Ramalingam, S., Feng, C.: Point-plane slam for hand-held 3D sensors. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 5182–5189. IEEE (2013)
Coughlan, J.M., Yuille, A.L.: Manhattan world: compass direction from a single image by Bayesian inference. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 941–947. IEEE (1999)
Košecká, J., Zhang, W.: Video compass. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 476–490. Springer, Heidelberg (2002). doi:10.1007/3-540-47979-1_32
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33715-4_54
Straub, J., Rosman, G., Freifeld, O., Leonard, J.J., Fisher, J.W.: A mixture of manhattan frames: beyond the manhattan world. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3770–3777. IEEE (2014)
Straub, J., Bhandari, N., Leonard, J.J., Fisher III, J.W.: Real-time manhattan world rotation estimation in 3D. In: IROS (2015)
Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21, 32–40 (1975)
Holz, D., Holzer, S., Rusu, R.B., Behnke, S.: Real-time plane segmentation using RGB-D cameras. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS (LNAI), vol. 7416, pp. 306–317. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32060-6_26
He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1397–1409 (2013)
Carreira-Perpiñán, M.: A review of mean-shift algorithms for clustering. arXiv preprint (2015). arXiv:1503.00687
Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D slam systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012)
Handa, A., Whelan, T., McDonald, J., Davison, A.J.: A benchmark for RGB-D visual odometry, 3D reconstruction and slam. In: IEEE International Conference on Robotics and Automation (ICRA) (2014)
Lu, Y., Song, D.: Robustness to lighting variations: an RGB-D indoor visual odometry using line segments. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 688–694. IEEE (2015)
Acknowledgement
The research leading to these results is supported by Australian Centre for Robotic Vision. The work is furthermore supported by ARC grants DE150101365. Yi Zhou acknowledges the financial support from the China Scholarship Council for his Ph.D. Scholarship No. 201406020098.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zhou, Y., Kneip, L., Rodriguez, C., Li, H. (2017). Divide and Conquer: Efficient Density-Based Tracking of 3D Sensors in Manhattan Worlds. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10115. Springer, Cham. https://doi.org/10.1007/978-3-319-54193-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-54193-8_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54192-1
Online ISBN: 978-3-319-54193-8
eBook Packages: Computer ScienceComputer Science (R0)