Abstract
We propose a direct (feature-less) monocular SLAM algorithm which, in contrast to current state-of-the-art regarding direct methods, allows to build large-scale, consistent maps of the environment. Along with highly accurate pose estimation based on direct image alignment, the 3D environment is reconstructed in real-time as pose-graph of keyframes with associated semi-dense depth maps. These are obtained by filtering over a large number of pixelwise small-baseline stereo comparisons. The explicitly scale-drift aware formulation allows the approach to operate on challenging sequences including large variations in scene scale. Major enablers are two key novelties: (1) a novel direct tracking method which operates on \(\mathfrak{sim}(3)\), thereby explicitly detecting scale-drift, and (2) an elegant probabilistic solution to include the effect of noisy depth values into tracking. The resulting direct monocular SLAM system runs in real-time on a CPU.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Achtelik, M., Weiss, S., Siegwart, R.: Onboard IMU and monocular vision based control for MAVs in unknown in- and outdoor environments. In: Intl. Conf. on Robotics and Automation (ICRA) (2011)
Akbarzadeh, A., Frahm, J.M., Mordohai, P., Engels, C., Gallup, D., Merrell, P., Phelps, M., Sinha, S., Talton, B., Wang, L., Yang, Q., Stewenius, H., Yang, R., Welch, G., Towles, H., Nistér, D., Pollefeys, M.: Towards urban 3d reconstruction from video. In: 3DPVT, pp. 1–8 (2006)
Benhimane, S., Malis, E.: Real-time image-based tracking of planes using efficient second-order minimization (2004)
Comport, A., Malis, E., Rives, P.: Accurate quadri-focal tracking for robust 3d visual odometry. In: Intl. Conf. on Robotics and Automation (ICRA) (2007)
Concha, A., Civera, J.: Using superpixels in monocular SLAM. In: Intl. Conf. on Robotics and Automation (ICRA) (2014)
Eade, E., Drummond, T.: Edge landmarks in monocular slam. In: British Machine Vision Conf. (2006)
Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the RGB-D slam system. In: Intl. Conf. on Robotics and Automation (ICRA) (2012)
Engel, J., Sturm, J., Cremers, D.: Camera-based navigation of a low-cost quadrocopter. In: Intl. Conf. on Intelligent Robot Systems (IROS) (2012)
Engel, J., Sturm, J., Cremers, D.: Semi-dense visual odometry for a monocular camera. In: Intl. Conf. on Computer Vision (ICCV) (2013)
Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: Fast semi-direct monocular visual odometry. In: Intl. Conf. on Robotics and Automation (ICRA) (2014)
Glover, A., Maddern, W., Warren, M., Stephanie, R., Milford, M., Wyeth, G.: OpenFABMAP: an open source toolbox for appearance-based loop closure detection. In: Intl. Conf. on Robotics and Automation (ICRA), pp. 4730–4735 (2012)
Handa, A., Newcombe, R.A., Angeli, A., Davison, A.J.: Real-time camera tracking: When is high frame-rate best? In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 222–235. Springer, Heidelberg (2012)
Horn, B.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America (1987)
Kerl, C., Sturm, J., Cremers, D.: Dense visual SLAM for RGB-D cameras. In: Intl. Conf. on Intelligent Robot Systems (IROS) (2013)
Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Intl. Symp. on Mixed and Augmented Reality (ISMAR) (2007)
Klein, G., Murray, D.: Improving the agility of keyframe-based SLAM. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 802–815. Springer, Heidelberg (2008)
Klose, S., Heise, P., Knoll, A.: Efficient compositional approaches for real-time robust direct visual odometry from RGB-D data. In: Intl. Conf. on Intelligent Robot Systems (IROS) (2013)
Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A general framework for graph optimization. In: Intl. Conf. on Robotics and Automation (ICRA) (2011)
Li, M., Mourikis, A.: High-precision, consistent EKF-based visual-inertial odometry. International Journal of Robotics Research 32, 690–711 (2013)
Newcombe, R., Lovegrove, S., Davison, A.: DTAM: Dense tracking and mapping in real-time. In: Intl. Conf. on Computer Vision (ICCV) (2011)
Pizzoli, M., Forster, C., Scaramuzza, D.: REMODE: Probabilistic, monocular dense reconstruction in real time. In: Intl. Conf. on Robotics and Automation (ICRA) (2014)
Schöps, T., Engel, J., Cremers, D.: Semi-dense visual odometry for AR on a smartphone. In: Intl. Symp. on Mixed and Augmented Reality (ISMAR) (2014)
Strasdat, H., Montiel, J., Davison, A.: Scale drift-aware large scale monocular slam. In: Robotics: Science and Systems (RSS) (2010)
Stühmer, J., Gumhold, S., Cremers, D.: Real-time dense geometry from a handheld camera. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 11–20. Springer, Heidelberg (2010)
Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: Intl. Conf. on Intelligent Robot Systems (IROS) (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Engel, J., Schöps, T., Cremers, D. (2014). LSD-SLAM: Large-Scale Direct Monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8690. Springer, Cham. https://doi.org/10.1007/978-3-319-10605-2_54
Download citation
DOI: https://doi.org/10.1007/978-3-319-10605-2_54
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10604-5
Online ISBN: 978-3-319-10605-2
eBook Packages: Computer ScienceComputer Science (R0)