[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cardinalities of Finite Relations in Coq

  • Conference paper
  • First Online:
Interactive Theorem Proving (ITP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9807))

Included in the following conference series:

Abstract

We present an extension of a Coq library for relation algebras, where we provide support for cardinals in a point-free way. This makes it possible to reason purely algebraically, which is well-suited for mechanisation. We discuss several applications in the area of graph theory and program verification.

This work was supported by the project ANR 12IS02001 PACE.

D. Pous—This author is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berghammer, R., Höfner, P., Stucke, I.: Tool-based verification of a relational vertex coloring program. In: Kahl, W., Winter, M., Oliveira, J. (eds.) RAMiCS 2015. LNCS, vol. 9348, pp. 275–292. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24704-5_17

    Google Scholar 

  2. Berghammer, R., Stucke, I., Winter, M.: Investigating and computing bipartitions with algebraic means. In: Kahl, W., Winter, M., Oliveira, J. (eds.) RAMiCS 2015. LNCS, vol. 9348, pp. 257–274. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24704-5_16

    Chapter  Google Scholar 

  3. Brunet, P., Pous, D., Stucke, I.: Cardinalities of relations in Coq. Coq Development and full version of this extended abstract (2016). http://media.informatik.uni-kiel.de/cardinal/

  4. Furusawa, H.: Algebraic formalisations of fuzzy relations and their representation theorems. Ph.D. thesis, Department of Informatics, Kyushu University (1998)

    Google Scholar 

  5. Galatos, N., Jipsen, P., Kowalski, T., Ono, H., Lattices, R.: An Algebraic Glimpse at Substructural Logics. Elsevier, Oxford (2007)

    MATH  Google Scholar 

  6. Kahl, W.: Calculational relation-algebraic proofs in Isabelle/Isar. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS 2003. LNCS, vol. 3051, pp. 178–190. Springer, Heidelberg (2004)

    Google Scholar 

  7. Kahl, W.: Dependently-typed formalisation of relation-algebraic abstractions. In: de Swart, H. (ed.) RAMICS 2011. LNCS, vol. 6663, pp. 230–247. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Kawahara, Y.: On the cardinality of relations. In: Schmidt, R.A. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 251–265. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Pous, D.: Relation Algebra and KAT in Coq. http://perso.ens-lyon.fr/damien.pous/ra/

  10. Pous, D.: Kleene algebra with tests and coq tools for while programs. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 180–196. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Schmidt, G., Ströhlein, T.: Relation algebras: concept of points and representability. Discrete Math. 54(1), 83–92 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schmidt, G., Ströhlein, T.: Relations and Graphs - Discrete Mathematics for Computer Scientists. EATCS Monographs on Theoretical Computer Science. Springer, Berlin (1993)

    MATH  Google Scholar 

  13. Sozeau, M.: A new look at generalized rewriting in type theory. J. Formalized Reason. 2(1), 41–62 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Tarski, A.: On the calculus of relations. J. Symbolic Log. 6(3), 73–89 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tarski, A., Givant, S.: A Formalization of Set Theory without Variables, vol. 41. Colloquium Publications, AMS, Providence, Rhode Island (1987)

    MATH  Google Scholar 

  16. Wei, V.: A lower bound for the stability number of a simple graph. Bell Laboratories Technical Memorandum 81–11217-9 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Insa Stucke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Brunet, P., Pous, D., Stucke, I. (2016). Cardinalities of Finite Relations in Coq. In: Blanchette, J., Merz, S. (eds) Interactive Theorem Proving. ITP 2016. Lecture Notes in Computer Science(), vol 9807. Springer, Cham. https://doi.org/10.1007/978-3-319-43144-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43144-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43143-7

  • Online ISBN: 978-3-319-43144-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics