[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Investigating and Computing Bipartitions with Algebraic Means

  • Conference paper
  • First Online:
Relational and Algebraic Methods in Computer Science (RAMICS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9348))

Abstract

Using Dedekind categories as an algebraic structure for (binary) set-theoretic relations without complements, we present purely algebraic definitions of “to be bipartite” and “to possess no odd cycles” and prove that both notions coincide. This generalises D. König’s well-known theorem from undirected graphs to abstract relations, and, hence, to models such as L-relations that are different from set-theoretic relations. One direction of this generalisation is shown by specifying a bipartition for the relation in question in form of a pair of disjoint relational vectors. For set-theoretic relations this immediately leads to relational programs for computing bipartitions. We also discuss how the algebraic proofs can be mechanised using theorem proving tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berghammer, R., Neumann, F.: RelView – An OBDD-based Computer Algebra system for relations. In: Gansha, V.G., Mayr, E.W., Vorozhtsov, E. (eds.) Computer Algebra in Scientific Computing. LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Berghammer, R., Winter, M.: Embedding mappings and splittings with applications. Acta Informatica 47, 77–110 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berghammer, R., Struth, G.: On automated program construction and verification. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS, vol. 6120, pp. 22–41. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Berghammer, R., Höfner, P., Stucke, I.: Automated verification of relational while-programs. In: Widłak, W. (ed.) Molecular Biology - Not Only for Bioinformatics. LNCS, vol. 8248, pp. 309–326. Springer, Heidelberg (2013)

    Google Scholar 

  5. Diestel, R.: Graph theory, 3rd edn. Springer (2005)

    Google Scholar 

  6. Foster, S., Struth, G., Weber, T.: Automated engineering of relational and algebraic methods in Isabelle/HOL. In: de Swart, H. (ed.) Relational and Algebraic Methods in Computer Science. LNCS, vol. 6663, pp. 52–67. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Freyd, P., Scedrov, A.: Categories, allegories. North-Holland (1990)

    Google Scholar 

  8. Furusawa, H., Kawahara, Y., Winter, M.: Dedekind categories with cutoff operators. Fuzzy Sets and Systems 173, 1–24 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Höfner, P., Struth, G.: On automating the calculus of relations. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 50–66. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. König, D.: Über Graphen und ihre Anwendung in der Determinantentheorie und Mengenlehre. Mathematische Annalen 77, 453–465 (1916)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ng, K.C., Tarski, A.: Relation algebras with transitive closure. Abstract 742-02-09, Notices Amer. Math. Soc. 24, A29-A30 (1977)

    Google Scholar 

  12. Oliver, J.P., Serrato, D.: Categories de Dedekind: Morphismes dans les categories de Schröder. C.R. Acad. Sci.Paris 290, 939–941 (1980)

    MATH  Google Scholar 

  13. Pous, D.: Kleene algebra with tests and Coq tools for while programs. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 180–196. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Pous, D.: Relation algebra and KAT in Coq. http://perso.ens-lyon.fr/damien.pous/ra/

    Google Scholar 

  15. Rubin, H., Rubin, J.E.: Equivalents of the Axiom of Choice. North-Holland (1970)

    Google Scholar 

  16. Schmidt, G., Ströhlein, T.: Relations and graphs, Discrete mathematics for computer scientists, EATCS Monographs on Theoretical Computer Science, Springer (1993)

    Google Scholar 

  17. Schmidt, G.: Relational mathematics. Encyclopedia of Mathematics and its Applications, vol. 132. Cambridge University Press (2010)

    Google Scholar 

  18. Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6, 73–89 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tarski, A., Givant, S.: A formalization of set theory without variables. Colloquium Publications 41. American Mathematical Society (1987)

    Google Scholar 

  20. Winter, M.: Strukturtheorie heterogener Relationenalgebren mit Anwendung auf Nichtdetermismus in Programmiersprachen. Dissertation, Fakultät für Informatik, Universität der Bundeswehr München, Dissertationsverlag NG Kopierladen GmbH (1998)

    Google Scholar 

  21. Winter, M.: An ordered category of processes. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS/AKA 2008. LNCS, vol. 4988, pp. 367–381. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Winter, M.: Complements in distributive allegories. In: Berghammer, R., Jaoua, A.M., Möller, B. (eds.) RelMiCS 2009. LNCS, vol. 5827, pp. 337–350. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Coq-homepage: http://coq.infia.fr

  24. Prover9-homepage: http://www.prover9.org

  25. RelView-homepage: http://www.informatik.uni-kiel.de/~progsys/relview/

  26. Input files, proof scripts: http://media.informatik.uni-kiel.de/Ramics2015/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Berghammer, R., Stucke, I., Winter, M. (2015). Investigating and Computing Bipartitions with Algebraic Means. In: Kahl, W., Winter, M., Oliveira, J. (eds) Relational and Algebraic Methods in Computer Science. RAMICS 2015. Lecture Notes in Computer Science(), vol 9348. Springer, Cham. https://doi.org/10.1007/978-3-319-24704-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24704-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24703-8

  • Online ISBN: 978-3-319-24704-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics