Abstract
Using a sizable set of sensory data and related usage records on Android devices, we are able to give a reasonable prediction of three imporant aspects of phone usage: messages, phone calls and cellular data. We solve the problem via an estimation of a user’s daily routine, on which we can train a hierarchical generative model on phone usages in all time slots of a day. The model generates phone usage behaviors in terms of three kinds of data: the state of user-phone interaction, occurrence times of an activity and the duration of the activity in each occurrence. We apply the model on a dataset with 107 frequent users, and find the prediction error of generative model is the smallest when compare with several other baseline methods. In addition, CDF curves illustrate the availability of generative model for most users with the distribution of prediction error for all test cases. We also explore the effects of time slots in a day, as well as size of training and test sets. The results suggest several interesting directions for further research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cho, J., Garcia-Molina, H.: Estimating frequency of change. ACM Trans. Internet Technol. (TOIT) 3(3), 256–290 (2003)
Do, T.M.T., Blom, J., Gatica-Perez, D.: Smartphone usage in the wild: a large-scale analysis of applications and context. In: ICMI, pp. 353–360. ACM (2011)
Eckmann, J., Moses, E., Sergi, D.: Entropy of dialogues creates coherent structures in e-mail traffic. Proc. Nat. Acad. Sci. USA 101(40), 14333–14337 (2004)
Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin, D.: Diversity in smartphone usage. In: MobiSys, pp. 179–194. ACM (2010)
Farrahi, K., Gatica-Perez, D.: What did you do today?: discovering daily routines from large-scale mobile data. In: Proceedings of MM, pp. 849–852. ACM (2008)
Farrahi, K., Gatica-Perez, D.: Probabilistic mining of socio-geographic routines from mobile phone data. Sel. Top. Signal Process. 4(4), 746–755 (2010)
Ferraz Costa, A., Yamaguchi, Y., Juci Machado Traina, A., Traina Jr., C., Faloutsos, C.: RSC: Mining and modeling temporal activity in social media. In: KDD, pp. 269–278. ACM (2015)
Hidalgo, R.C.A.: Conditions for the emergence of scaling in the inter-event time of uncorrelated and seasonal systems. Phys. A: Stat. Mech. Appl. 369(2), 877–883 (2006)
Hollmén, J., Tresp, V.: Call-based fraud detection in mobile communication networks using a hierarchical regime-switching model. In: Advances in Neural Information Processing Systems, pp. 889–895 (1999)
Jin, Y., et al.: Characterizing data usage patterns in a large cellular network. In: SIGCOMM Workshop on Cellular Networks, pp. 7–12. ACM (2012)
Juan, D.-C., Li, L., Peng, H.-K., Marculescu, D., Faloutsos, C.: Beyond poisson: modeling inter-arrival time of requests in a datacenter. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014, Part II. LNCS, vol. 8444, pp. 198–209. Springer, Heidelberg (2014)
Kang, J.M., Seo, S.S., Hong, J.W.K.: Usage pattern analysis of smartphones. In: Network Operations and Management Symposium, pp. 1–8. IEEE (2011)
Kleinberg, J.: Bursty and hierarchical structure in streams. Data Min. Knowl. Disc. 7(4), 373–397 (2003)
Liao, Z.X., Lei, P.R., Shen, T.J., Li, S.C., Peng, W.C.: Mining temporal profiles of mobile applications for usage prediction. In: ICDMW, pp. 890–893. IEEE (2012)
Liao, Z.X., Li, S.C., Peng, W.C., Yu, P.S., Liu, T.C.: On the feature discovery for app usage prediction in smartphones. In: ICDM, pp. 1127–1132. IEEE (2013)
Liao, Z.X., Pan, Y.C., Peng, W.C., Lei, P.R.: On mining mobile apps usage behavior for predicting apps usage in smartphones. In: CIKM, pp. 609–618. ACM (2013)
Malmgren, R.D., Hofman, J.M., Amaral, L.A., Watts, D.J.: Characterizing individual communication patterns. In: KDD, pp. 607–616. ACM (2009)
Malmgren, R.D., Stouffer, D.B., Motter, A.E., Amaral, L.A.: A poissonian explanation for heavy tails in e-mail communication. Proc. Nat. Acad. Sci. 105(47), 18153–18158 (2008)
Vaz de Melo, P.O.S., Faloutsos, C., Assunção, R., Loureiro, A.: The self-feeding process: a unifying model for communication dynamics in the web. In: WWW, pp. 1319–1330 (2013)
Melo, P.O., Faloutsos, C., Assunçao, R., Alves, R., Loureiro, A.A.: Universal and distinct properties of communication dynamics: how to generate realistic inter-event times. TKDD 9(3), 24 (2015)
Shin, C., Hong, J.H., Dey, A.K.: Understanding and prediction of mobile application usage for smart phones. In: Ubicomp, pp. 173–182. ACM (2012)
Sia, K.C., Cho, J., Cho, H.K.: Efficient monitoring algorithm for fast news alerts. IEEE Trans. Knowl. Data Eng. 19(7), 950–961 (2007)
Verkasalo, H.: Analysis of smartphone user behavior. In: Mobile Business and 2010 Ninth Global Mobility Roundtable (ICMB-GMR), pp. 258–263. IEEE (2010)
Wagner, D.T., Rice, A., Beresford, A.R.: Device analyzer: large-scale mobile data collection. ACM SIGMETRICS Perform. Eval. Rev. 41(4), 53–56 (2014)
Wagner, D.T., Rice, A., Beresford, A.R.: Device analyzer: understanding smartphone usage. In: Stojmenovic, I., Cheng, Z., Guo, S. (eds.) MOBIQUITOUS 2013. LNICST, vol. 131, pp. 195–208. Springer, Heidelberg (2014)
Xu, Y., et al.: Preference, context and communities: a multi-faceted approach to predicting smartphone app usage patterns. In: ISWC, pp. 69–76. ACM (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
An, C., Rockmore, D. (2016). Predicting Phone Usage Behaviors with Sensory Data Using a Hierarchical Generative Model. In: Cao, H., Li, J., Wang, R. (eds) Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9794. Springer, Cham. https://doi.org/10.1007/978-3-319-42996-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-42996-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42995-3
Online ISBN: 978-3-319-42996-0
eBook Packages: Computer ScienceComputer Science (R0)