Abstract
The Art Gallery Problem (AGP) is one of the most well-known problems in Computational Geometry (CG), with a rich history in the study of algorithms, complexity, and variants. Recently there has been a surge in experimental work on the problem. In this survey, we describe this work, show the chronology of developments, and compare current algorithms, including two unpublished versions, in an exhaustive experiment. Furthermore, we show what core algorithmic ingredients have led to recent successes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This is an an \(O((n+m)\log n)\) sweep line algorithm, where n is the number of polygon vertices and m the number of query points.
- 2.
In the context of fading [43] circular arcs may also be required.
- 3.
- 4.
This can be achieved by the instantiation of the Cartesian kernel with \(\texttt {CGAL::Lazy\_exact\_nt{<}CGAL::Gmpq{>}}\).
References
Aigner, M., Ziegler, G.M.: Proofs from THE BOOK, 4th edn. Springer Publishing Company Incorporated, Heidelberg (2009)
Amit, Y., Mitchell, J.S.B., Packer, E.: Locating guards for visibility coverage of polygons. In: ALENEX, pp. 120–134 (2007)
Amit, Y., Mitchell, J.S.B., Packer, E.: Locating guards for visibility coverage of polygons. Int. J. Comput. Geom. Appl. 20(5), 601–630 (2010)
Asano, T.: An efficient algorithm for finding the visibility polygon for a polygonal region with holes. IEICE Trans. 68(9), 557–559 (1985)
Austern, M.H.: Generic Programming and the STL. PUB-AW (1999)
Balas, E., Ng, S.M.: On the set covering polytope: II. lifting the facets with coefficients in \(\{0, 1, 2\}\). Math. Program. 45, 1–20 (1989). doi:10.1007/BF01589093. http://dx.doi.org/10.1007/BF01589093
Baumgartner, T., Fekete, S.P., Kröller, A., Schmidt, C.: Exact solutions and bounds for general art gallery problems. In: Proceedings of the SIAM-ACM Workshop on Algorithm Engineering and Experiments, ALENEX 2010, pp. 11–22. SIAM (2010)
Beasley, J.E.: Lagrangian relaxation. In: Reeves, C.R. (ed.) Modern Heuristic Techniques for Combinatorial Problems, pp. 243–303. Wiley, New York (1993). http://dl.acm.org/citation.cfm?id=166648.166660
Bottino, A., Laurentini, A.: A nearly optimal sensor placement algorithm for boundary coverage. Pattern Recogn. 41(11), 3343–3355 (2008)
Bottino, A., Laurentini, A.: A nearly optimal algorithm for covering the interior of an art gallery. Pattern Recogn. 44(5), 1048–1056 (2011). http://www.sciencedirect.com/science/article/pii/S0031320310005376
Bungiu, F., Hemmer, M., Hershberger, J., Huang, K., Kröller, A.: Efficient computation of visibility polygons. CoRR abs/1403.3905 (2014). http://arxiv.org/abs/1403.3905
CGAL (Computational Geometry Algorithms Library). http://www.cgal.org/
Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory Ser. B 18, 39–41 (1974)
Chwa, K., Jo, B., Knauer, C., Moet, E., van Oostrum, R., Shin, C.: Guarding art galleries by guarding witnesses. Int. J. Comput. Geom. Appl. 16(2–3), 205–226 (2006). http://dx.doi.org/10.1142/S0218195906002002
Couto, M.C., de Rezende, P.J., de Souza, C.C.: An exact algorithm for an art gallery problem. Technical report IC-09-46, Institute of Computing, University of Campinas, November 2009
Couto, M.C., de Rezende, P.J., de Souza, C.C.: Instances for the art gallery problem (2009). http://www.ic.unicamp.br/~cid/Problem-instances/Art-Gallery
Couto, M.C., de Rezende, P.J., de Souza, C.C.: An IP solution to the art gallery problem. In: SoCG 2009: Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 88–89. ACM, New York (2009)
Couto, M.C., de Rezende, P.J., de Souza, C.C.: Video: an IP solution to the art gallery problem. In: 18th Video Review of Computational Geometry at the 25th Annual Symposium on Computational Geometry, June 2009. www.computational-geometry.org/SoCG-videos/socg09video/video1-couto.mov
Couto, M.C., de Rezende, P.J., de Souza, C.C.: An exact algorithm for minimizing vertex guards on art galleries. Int. Trans. Oper. Res. 18, 425–448 (2011)
Couto, M.C., de Souza, C.C., de Rezende, P.J.: An exact and efficient algorithm for the orthogonal art gallery problem. In: SIBGRAPI 2007: Proceedings of the XX Brazilian Symposium on Computer Graphics and Image Processing, pp. 87–94. IEEE Computer Society, Washington, DC (2007)
Couto, M.C., Souza, C.C., Rezende, P.J.: Experimental evaluation of an exact algorithm for the orthogonal art gallery problem. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 101–113. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68552-4_8
IBM ILOG CPLEX Optimization Studio. http://www.ibm.com/software/integration/optimization/cplex-optimizer/
Deshpande, A., Kim, T., Demaine, E.D., Sarma, S.E.: A pseudopolynomial time O(logn)-approximation algorithm for art gallery problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 163–174. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73951-7_15
Efrat, A., Har-Peled, S.: Guarding galleries and terrains. Inf. Process. Lett. 100(6), 238–245 (2006)
Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding polygons and terrains. Algorithmica 31(1), 79–113 (2001)
Eisenbrand, F., Funke, S., Karrenbauer, A., Matijevic, D.: Energy-aware stage illumination. In: Proceedings of the 21st ACM Symposium on Computational Geometry (SCG 2005), pp. 336–345 (2005). http://portal.acm.org/citation.cfm?doid=1064092.1064144
Erdem, U.M., Sclaroff, S.: Optimal placement of cameras in floorplans to satisfy task requirements and cost constraints. In: Proceedings of the Fifth International Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras, pp. 30–41 (2004)
Erdem, U.M., Sclaroff, S.: Automated camera layout to satisfy task-specific and floor plan-specific coverage requirements. Comput. Vis. Image Underst. 103(3), 156–169 (2006)
Ernestus, M., Friedrichs, S., Hemmer, M., Kokemüller, J., Kröller, A., Moeini, M., Schmidt, C.: Algorithms for art gallery illumination. arXiv e-prints, October 2014
Fekete, S.P., Friedrichs, S., Kröller, A., Schmidt, C.: Facets for art gallery problems. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 208–220. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38768-5_20
Fekete, S.P., Friedrichs, S., Kröller, A., Schmidt, C.: Facets for art gallery problems. Algorithmica 73(2), 411–440 (2014)
Fisk, S.: A short proof of Chvátal’s watchman theorem. J. Comb. Theory Ser. B 24(3), 374–375 (1978)
Friedrichs, S.: Integer solutions for the art gallery problem using linear programming. Master’s thesis, TU Braunschweig (2012)
Ghosh, S.K.: Approximation algorithms for art gallery problems in polygons and terrains. In: Rahman, M.S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 21–34. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11440-3_3
GNU Multiple Precision Arithmetic Library (2013). http://gmplib.org
Hemmer, M., Huang, K., Bungiu, F.: 2D visibility. In: CGAL User and Reference Manual. CGAL Editorial Board (2014, to appear)
Honsberger, R.: Mathematical Gems II. Mathematical Association of America, Washington, DC (1976)
Kahn, J., Klawe, M., Kleitman, D.: Traditional art galleries require fewer watchmen. SIAM J. Algebr. Discrete Methods 4(2), 194–206 (1983)
Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A core library for robust numeric and geometric computation. In: Proceedings of the 15th Annual ACM Symposium of Computational Geometry (SCG), pp. 351–359 (1999)
Kokemüller, J.: Variants of the art gallery problem. Master’s thesis, TU Braunschweig (2014)
Kröller, A., Baumgartner, T., Fekete, S.P., Schmidt, C.: Exact solutions and bounds for general art gallery problems. ACM J. Exp. Algothmmics 17, Article ID 2.3 (2012)
Kröller, A., Moeini, M., Schmidt, C.: A novel efficient approach for solving the art gallery problem. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 5–16. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36065-7_3
Kröller, A., Schmidt, C.: Energy-aware art gallery illumination. In: Proceedings of the 28th European Workshop on Computational Geometry (EuroCG 2012), pp. 93–96 (2012)
Laurentini, A.: Guarding the walls of an art gallery. Vis. Comput. 15(6), 265–278 (1999)
Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE Trans. Inf. Theory 32(2), 276–282 (1986)
Mehlhorn, K., Näher, S.: Leda: A Platform for Combinatorial and Geometric Computing. PUB-CAMB, Cambridge (2000)
Mitchell, J.S.B.: Approximating watchman routes. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, NewOrleans, Louisiana, USA, 6-8 January 2013, pp. 844–855 (2013)
Nilsson, B.J.: Approximate guarding of monotone and rectilinear polygons. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1362–1373. Springer, Heidelberg (2005). doi:10.1007/11523468_110
O’Rourke, J.: Art Gallery Theorems and Algorithms. International Series of Monographs on Computer Science. Oxford University Press, New York (1987)
O’Rourke, J., Supowit, K.: Some NP-hard polygon decomposition problems. IEEE Trans. Inf. Theory 29(2), 181–190 (1983)
Packer, E.: Computing multiple watchman routes. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 114–128. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68552-4_9
Packer, E.: Robust geometric computing and optimal visibility coverage. Ph.D. thesis, SUNY Stony Brook (2008)
Tao, P.D., An, L.T.H.: Convex analysis approach to D.C. programming: theory, algorithms and applications. Acta Mathematica Vietnamica 22(1), 289–355 (1997)
Pion, S., Fabri, A.: A generic lazy evaluation scheme for exact geometric computations. In: 2nd # WOR-LCSD (2006). http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0608063
Schuchardt, D., Hecker, H.D.: Two NP-hard art-gallery problems for ortho-polygons. Math. Log. Q. 41, 261–267 (1995)
Shermer, T.C.: Recent results in art galleries (geometry). Proc. IEEE 80(9), 1384–1399 (1992)
Tomás, A.P., Bajuelos, A.L., Marques, F.: Approximation algorithms to minimum vertex cover problems on polygons and terrains. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Dongarra, J.J., Zomaya, A.Y., Gorbachev, Y.E. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 869–878. Springer, Heidelberg (2003). doi:10.1007/3-540-44860-8_90
Tomás, A.P., Bajuelos, A.L., Marques, F.: On visibility problems in the plane - solving minimum vertex guard problems by successive approximations. In: Proceedings of the 9th International Symposium on Artificial Intelligence and Mathematics (AI & MATH 2006) (2006, to appear)
Tozoni, D.C., de Rezende, P.J., de Souza, C.C.: Algorithm 966: a practical iterative algorithm for the art gallery problem using integer linear programming. ACM Trans. Math. Softw. 43(2), 16:1–16:27 (2016). doi:10.1145/2890491. Article no. 16
Tozoni, D.C., Rezende, P.J., Souza, C.C.: The quest for optimal solutions for the art gallery problem: a practical iterative algorithm. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 320–336. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38527-8_29
Urrutia, J.: Art gallery and illumination problems. In: Sack, J.R., Urrutia, J. (eds.) Handbook on Computational Geometry, pp. 973–1026. Elsevier Science Publishers, Amsterdam (2000)
Wein, R., Berberich, E., Fogel, E., Halperin, D., Hemmer, M., Salzman, O., Zukerman, B.: 2D arrangements. In: CGAL User and Reference Manual, 4.0 edn., CGAL Editorial Board (2012)
Acknowledgments
Many people have contributed to the developments described in this paper. In particular, the authors would like to thank Tobias Baumgartner, Marcelo C. Couto, Sándor P. Fekete, Winfried Hellmann, Mahdi Moeini, Eli Packer, and Christiane Schmidt.
Stephan Friedrichs was affiliated with TU Braunschweig, IBR during most of the research.
This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG) under contract number KR 3133/1-1 (Kunst!), by Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp, #2007/52015-0, #2012/18384-7), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grants #311140/2014-9, #477692/2012-5 and #302804/2010-2), and Faepex/Unicamp. Google Inc. supported the development of the Computational Geometry Algorithms Library [12] (CGAL) visibility package through the 2013 Google Summer of Code.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this chapter
Cite this chapter
de Rezende, P.J., de Souza, C.C., Friedrichs, S., Hemmer, M., Kröller, A., Tozoni, D.C. (2016). Engineering Art Galleries. In: Kliemann, L., Sanders, P. (eds) Algorithm Engineering. Lecture Notes in Computer Science(), vol 9220. Springer, Cham. https://doi.org/10.1007/978-3-319-49487-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-49487-6_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49486-9
Online ISBN: 978-3-319-49487-6
eBook Packages: Computer ScienceComputer Science (R0)