[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Facets for Art Gallery Problems

  • Conference paper
Computing and Combinatorics (COCOON 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7936))

Included in the following conference series:

Abstract

We demonstrate how polyhedral methods of mathematical programming can be developed for and applied to computing optimal solutions for large instances of a classical geometric optimization problem with an uncountable number of constraints and variables.

The Art Gallery Problem (AGP) asks for placing a minimum number of stationary guards in a polygonal region P, such that all points in P are guarded. The AGP is NP-hard, even to approximate. Due to the infinite number of points to be guarded as well as possible guard positions, applying mathematical programming methods for computing provably optimal solutions is far from straightforward.

In this paper, we use an iterative primal-dual relaxation approach for solving AGP instances to optimality. At each stage, a pair of LP relaxations for a finite candidate subset of primal covering and dual packing constraints and variables is considered; these correspond to possible guard positions and points that are to be guarded.

Of particular interest are additional cutting planes for eliminating fractional solutions. We identify two classes of facets, based on Edge Cover and Set Cover (SC) inequalities. Solving the separation problem for the latter is NP-complete, but exploiting the underlying geometric structure of the AGP, we show that large subclasses of fractional SC solutions cannot occur for the AGP. This allows us to separate the relevant subset of facets in polynomial time.

Finally, we characterize all facets for finite AGP relaxations with coefficients in {0, 1, 2}. We demonstrate the practical usefulness of our approach with improved solution quality and speed for a wide array of large benchmark instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chvátal, V.: A combinatorial theorem in plane geometry. J. Combin. Theory Ser. B 18, 39–41 (1975)

    Article  MATH  Google Scholar 

  2. Fisk, S.: A short proof of Chvátal’s watchman theorem. Journal of Combinatorial Theory (B 24), 374 (1978)

    Google Scholar 

  3. Aigner, M., Ziegler, G.M.: Proofs from the Book, 3rd edn. Springer (2004)

    Google Scholar 

  4. O’Rourke, J.: Art Gallery Theorems and Algorithms. International Series of Monographs on Computer Science. Oxford University Press, New York (1987)

    MATH  Google Scholar 

  5. Urrutia, J.: Art gallery and illumination problems. In: Sack, J.R., Urrutia, J. (eds.) Handbook on Computational Geometry, pp. 973–1026. Elsevier (2000)

    Google Scholar 

  6. Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE Trans. Inf. Theor. 32(2), 276–282 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ghosh, S.K.: Approximation algorithms for art gallery problems in polygons and terrains. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 21–34. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding polygons and terrains. Algorithmica 31(1), 79–113 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Amit, Y., Mitchell, J.S.B., Packer, E.: Locating guards for visibility coverage of polygons. Int. J. Comput. Geometry Appl. 20(5), 601–630 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kröller, A., Baumgartner, T., Fekete, S.P., Schmidt, C.: Exact solutions and bounds for general art gallery problems. J. Exp. Alg. (2012)

    Google Scholar 

  11. Couto, M.C., de Souza, C.C., de Rezende, P.J.: An exact and efficient algorithm for the orthogonal art gallery problem. In: SIBGRAPI 2007, pp. 87–94. IEEE Computer Society, Washington, DC (2007)

    Google Scholar 

  12. Couto, M.C., de Souza, C.C., de Rezende, P.J.: Experimental evaluation of an exact algorithm for the orthogonal art gallery problem. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 101–113. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Couto, M.C., de Rezende, P.J., de Souza, C.C.: An exact algorithm for minimizing vertex guards on art galleries. International Transactions in Operational Research 18, 425–448 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Balas, E., Ng, M.: On the set covering polytope: I. all the facets with coefficients in {0,1,2}. Math. Program. 43(1), 57–69 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chvátal, V.: A combinatorial theorem in plane geometry. Journal of Combinatorial Theory, Series B 18(1), 39–41 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fekete, S.P., Friedrichs, S., Kröller, A., Schmidt, C. (2013). Facets for Art Gallery Problems. In: Du, DZ., Zhang, G. (eds) Computing and Combinatorics. COCOON 2013. Lecture Notes in Computer Science, vol 7936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38768-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38768-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38767-8

  • Online ISBN: 978-3-642-38768-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics