Abstract
To forecast the population of brown planthopper (BPH), a major insect pest of rice in Mekong Delta in Viet Nam, a light trap network is used in the experiments where the BPH trapped density is considered as monitoring called BPH light trap surveillance network (BSNET). There are two problems in order to deploy the BSNET: the number of the light traps and their positions. In this paper, we propose a new approach to optimize the BSNET by determining the number of light traps needed and the position for every light trap node in the surveillance region based on HoneyComb architecture. The experiment results are performed on the Brown Planthoppers surveillance network for Mekong Delta in Viet Nam.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Köhl, M., Magnussen, S.S.: Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory. Springer, Heidelberg (2006)
Nguyen, K.M., Lam, B.H., Truong, T.P., Pham, H.M.T., Ho, C.V., Bernard, P., Huynh, H.X.: Automatic light-trap using sensors. In: Proceeding in National Conference on Information and Communication Technology (2015)
Wang, B.: Coverage problems in sensor networks: a survey. ACM Comput. Surv. 43(4), 32:1–32:53 (2011). http://doi.acm.org/10.1145/1978802.1978811
Kozak, R.W.M.: PS sampling versus stratified sampling comparison of efficiency in agricultural surveys. Stat. Transit. 7(1), 5–12 (2005)
Talvitie, M., Leino, O., Holopainen, M.: Inventory of sparse forest populations using adaptive cluster sampling. Finnish Soc. For. Sci. Silva Fennica, 0037–5330 (2006)
Warrick, A.W., Myers, D.E.: Optimization of sampling locations for variogram calculations. Water Resour. Res. 23(3), 496–500 (1987). http://dx.doi.org/10.1029/WR023i003p00496
Brus, D.J., Heuvelink, G.B.: Optimization of sample patterns for universal kriging of environmental variables. Geoderma 138(12), 86–95 (2007)
Jourdan, D., de Weck, O.: Layout optimization for a wireless sensor network using a multi-objective genetic algorithm. In: 2004 IEEE 59th Vehicular Technology Conference, VTC 2004-Spring, vol. 5, pp. 2466–2470 (2004)
Lee, J.-H., Moon, I.: Modeling and optimization of energy efficient routing in wireless sensor networks. Appl. Math. Model. 38(78), 2280–2289 (2014)
Gogu, A., Nace, D., Dilo, A., Mertnia, N.: Optimization problems in wireless sensor networks. In: 2011 International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), pp. 302–309, June 2011
Niewiadomska-Szynkiewicz, E., Marks, M.: Optimization schemes for wireless sensor network localization. Int. J. Appl. Math. Comput. Sci. 19(2), 291–302 (2009)
Xuan, V.T., Huynh, X.-H., Le Ngoc, M., Drogoul, A.: Optimizing an environmental surveillance network with Gaussian process entropy - an optimization approach by agent-based simulation. In: 7th International KES Conference on Agents and Multi-agent Systems - Technologies and Applications, Vietnam, May 2013
Aioffi, W., Mateus, G., Quintao, F.: Optimization issues and algorithms for wireless sensor networks with mobile sink. In: Proceedings of INOC (2007)
Iqbal, M., Naeem, M., Anpalagan, A., Ahmed, A., Azam, M.: Wireless sensor network optimization: multi-objective paradigm. Sensors 15(7), 17572 (2015)
Madan, R., Cui, S., Lall, S., Goldsmith, A.: Modeling and optimization of transmission schemes in energy-constrained wireless sensor networks. IEEE/ACM Trans. Network. 15(6), 1359–1372 (2007)
Gopakumar, A., Jacob, L.: Localization in wireless sensor networks using particle swarm optimization. In: IET International Conference on Wireless, Mobile and Multimedia Networks, 2008, pp. 227–230, January 2008
Ghari, P.M., Shahbazian, R., Ghorashi, S.A.: Localization in Wireless Sensor Networks Using Quadratic Optimization, ArXiv e-prints, August 2014
Monica, Stefania, Ferrari, Gianluigi: Particle swarm optimization for auto-localization of nodes in wireless sensor networks. In: Tomassini, Marco, Antonioni, Alberto, Daolio, Fabio, Buesser, Pierre (eds.) ICANNGA 2013. LNCS, vol. 7824, pp. 456–465. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37213-1_47
Cressie, N.A.C.: Statistics for Spatial Data. Wiley-Interscience, New York (1993)
Truong, V.X., Huynh, H.X., Le, M.N., Drogoul, A.: Estimating the density of brown plant hoppers from a light-traps network based on unit disk graph. In: Zhong, N., Callaghan, V., Ghorbani, A.A., Hu, B. (eds.) AMT 2011. LNCS, vol. 6890, pp. 276–287. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23620-4_30. http://dl.acm.org/citation.cfm?id=2033896.2033931
Truong, V.X., Huynh, H.X., Le, M.N., Drogoul, A.: Modeling a surveillance network based on unit disk graph technique – application for monitoring the invasion of insects in Mekong Delta region. In: Rahwan, I., Wobcke, W., Sen, S., Sugawara, T. (eds.) PRIMA 2012. LNCS (LNAI), vol. 7455, pp. 228–242. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32729-2_16
Erman, A.T., Dilo, A., Havinga, P.J.M.: A virtual infrastructure based on honeycomb tessellation for data dissemination in multi-sink mobile wireless sensor networks. EURASIP J. Wirel. Commun. Network. 2012, 17 (2012)
Palanivelu, T.G., Nakkeeran, R.: Wireless - Mobile communication
Vaithilingam, D.C.: Role of insect light trap in organic agriculture, Romvijay Biootech Private Limited (2013)
Linker, D.B.O.H.M., Barbercheck, M.E.: Insect management on organic farms (2009)
Brown planthopper: Threat to rice, International Rice Research Institude (1979)
Khoufi, I., Minet, P., Laouiti, A., Mahfoudh, S., Survey of Deployment Algorithms in Wireless Sensor Networks: Coverage and Connectivity Issues and Challenges. Int. J. Auton. Adapt. Commun. Syst. (IJAACS), p. 24 (2014)
Baltzis, K.B.: Hexagonal vs Circular Cell Shape: A Comparative Analysis and Evaluation of the two Popular Modeling Approximations. INTECH Open Access Publisher, Rijeka (2011)
Sun, Y., Yu, Z., Ge, J., Lin, B., Yun, Z.: On deploying wireless sensors to achieve both coverage, connectivity. In: Proceedings of the 5th International Conference on Wireless Communications, Networking, Mobile Computing, WiCOM 2009, Piscataway, NJ, USA, pp. 3369–3372. IEEE Press (2009). http://dl.acm.org/citation.cfm?id=1737966.1738288
Ghosh, A., Das, S.K.: Coverage and connectivity issues in wireless sensor networks: a survey. Pervasive Mob. Comput. 4(3), 303–334 (2008)
Zhu, C., Zheng, C., Shu, L., Han, G.: Review: a survey on coverage and connectivity issues in wireless sensor networks. J. Netw. Comput. Appl. 35(2), 619–632 (2012). http://dx.doi.org/10.1016/j.jnca.2011.11.016
Zhang, H., Hou, J.C.: Maintaining sensing coverage and connectivity in large sensor networks. Ad Hoc Sens. Wirel. Netw. 1(1–2), 89–124 (2005)
Bai, X., Kumar, S., Xuan, D., Yun, Z., Lai, T.H.: Deploying wireless sensors to achieve both coverage, connectivity. In: Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking, Computing, MobiHoc 2006, pp. 131–142. ACM, New York (2006). http://doi.acm.org/10.1145/1132905.1132921
Wang, Y.-C., Hu, C.-C., Tseng, Y.-C.: Efficient deployment algorithms for ensuring coverage and connectivity of wireless sensor networks, In: Imre, S., Crowcroft, J. (eds.) WICON, pp. 114–121. IEEE Computer Society, Washington (2005)
Netgen website, A generator of concurrent systems. http://wsn.univ-brest.fr/NetGenNews
Gama website, Modeling, simulation platform. https://github.com/gama-platforms
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Luong, H.H., Truong, T.P., Nguyen, K.M., Lam, B.H., Huynh, H.X. (2016). Optimizing the Light Trap Position for Brown Planthopper (BPH) Surveillance Network. In: Vinh, P., Barolli, L. (eds) Nature of Computation and Communication. ICTCC 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 168. Springer, Cham. https://doi.org/10.1007/978-3-319-46909-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-46909-6_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46908-9
Online ISBN: 978-3-319-46909-6
eBook Packages: Computer ScienceComputer Science (R0)