Abstract
This note is based on the plenary talk given by the second author at MACIS 2015, the Sixth International Conference on Mathematical Aspects of Computer and Information Sciences. Motivated by some of the work done within the Priority Programme SPP 1489 of the German Research Council DFG, we discuss a number of current challenges in the development of Open Source computer algebra systems. The main focus is on algebraic geometry and the system Singular.
The second author acknowledges support from the DFG projects DE 410/8-1 and -2, DE 410/9-1 and -2, and from the OpenDreamKit Horizon 2020 European Research Infrastructures project (\(\#\)676541). The third author was supported partially by the DFG project HA 3094/8-1 and by proyecto FONDECYT postdoctorado no 3160016.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
See http://julialang.org.
- 2.
- 3.
- 4.
See http://jupyter.org.
- 5.
The Jacobian ideal of A is generated by the images of the \(c\times c\) minors of the Jacobian matrix \((\frac{\partial f_i}{\partial x_j})\), where c is the codimension and \(f_1,\dots , f_r\) are polynomial generators for I.
References
Arnold, E.A.: Modular algorithms for computing Gröbner bases. J. Symbolic Comput. 35(4), 403–419 (2003)
Arzhantsev, I.V., Hausen, J.: Geometric invariant theory via Cox rings. J. Pure Appl. Algebra 213(1), 154–172 (2009)
Barakat, M.: Computations of unitary groups in characteristic \(2\) (2014). http://www.mathematik.uni-kl.de/~barakat/forJPSerre/UnitaryGroup.pdf
Behrends, R.: Shared memory concurrency for GAP. Comput. Algebra Rundbrief 55, 27–29 (2014)
Behrends, R., Hammond, K., Janjic, V., Konovalov, A., Linton, S., Loidl, H.-W., Maier, P., Trinder, P.: HPC-GAP: engineering a 21st-century high-performance computer algebra system. Concurrency Comput. Pract. Experience (2016). cpe.3746
Behrends, R., Konovalov, A., Linton, S., Lübeck, F., Neunhöffer, M.: Parallelising the computational algebra system GAP. In: Proceedings of the 4th International Workshop on Parallel and Symbolic Computation, PASCO 2010, pp. 177–178. ACM, New York (2010)
Berchtold, F., Hausen, J.: GIT equivalence beyond the ample cone. Michigan Math. J. 54(3), 483–515 (2006)
Bernal Guillén, M.M.: Relations in the Cox Ring of \(\overline{M}_{0,6}\). Ph.D. thesis, University of Warwick (2012)
Bierstone, E., Milman, P.D.: Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math. 128(2), 207–302 (1997)
Böhm, J., Decker, W., Laplagne, S., Pfister, G.: Computing integral bases via localization and Hensel lifting (2015). http://arxiv.org/abs/1505.05054
Böhm, J., Decker, W., Laplagne, S., Pfister, G.: Local to global algorithms for the Gorenstein adjoint ideal of a curve (2015). http://arxiv.org/abs/1505.05040
Böhm, J., Decker, W., Laplagne, S., Pfister, G., Steenpaß, A., Steidel, S.: locnormal.lib - A Singular library for a local-to-global approach to normalization (2013). Available in the Singular distribution, http://www.singular.uni-kl.de
Böhm, J., Decker, W., Laplagne, S., Pfister, G., Steenpaß, A., Steidel, S.: modnormal.lib - A Singular library for a modular approach to normalization (2013). Available in the Singular distribution, http://www.singular.uni-kl.de
Böhm, J., Decker, W., Laplagne, S., Pfister, G., Steenpaß, A., Steidel, S.: Parallel algorithms for normalization. J. Symbolic Comput. 51, 99–114 (2013)
Böhm, J., Decker, W., Laplagne, S., Seelisch, F.: paraplanecurves.lib - A Singular library for the parametrization of rational curves (2013). Available in the Singular distribution, http://www.singular.uni-kl.de
Böhm, J., Keicher, S., Ren, Y.: gitfan.lib - A Singular library for computing the GIT fan (2015). Available in the Singular distribution, http://www.mathematik.uni-kl.de/~boehm/gitfan
Böhm, J., Keicher, S., Ren, Y.: Computing GIT-fans with symmetry and the Mori chamber decomposition of \(\overline{M}_{0,6}\) (2016)
Boku, D.K., Decker, W., Fieker, C., Steenpass, A.: Gröbner bases over algebraic number fields. In: Proceedings of the International Workshop on Parallel Symbolic Computation, PASCO 2015, pp. 16–24. ACM, New York (2015)
Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational algebra and number theory (London, 1993)
Bravo, A.M., Encinas, S., Villamayor U., O.: A simplified proof of desingularization and applications. Rev. Mat. Iberoamericana 21(2), 349–458 (2005)
Bruns, W., Ichim, B.: Normaliz: algorithms for affine monoids and rational cones. J. Algebra 324(5), 1098–1113 (2010)
Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Rest-klassenring nach einem nulldimensionalen Polynomideal. Dissertation, Universität Innsbruck (1965)
de Jong, T.: An algorithm for computing the integral closure. J. Symbolic Comput. 26(3), 273–277 (1998)
Decker, W., de Jong, T., Greuel, G.-M., Pfister, G.: The normalization: a new algorithm, implementation and comparisons. In: Dräxler, P., Ringel, C.M., Michler, G.O. (eds.) Computational Methods for Representations of Groups and Algebras. Progress in Mathematics, vol. 173, pp. 177–185. Birkhäuser, Basel (1999)
Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-0-2 — A computer algebra system for polynomial computations (2015). http://www.singular.uni-kl.de
Dolgachev, I.V., Hu, Y.: Variation of geometric invariant theory quotients. (With an appendix: “An example of a thick wall” by Nicolas Ressayre). Publ. Math. Inst. Hautes Étud. Sci. 87, 5–56 (1998)
Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)
Eisenbud, D.: The Geometry of Syzygies: A Second Course in Commutative Algebra and Algebraic Geometry. Graduate Texts in Mathematics, vol. 229. Springer, New York (2005)
Eisenbud, D., Fløystad, G., Schreyer, F.-O.: Sheaf cohomology and free resolutions over exterior algebras. Trans. Am. Math. Soc. 355(11), 4397–4426 (2003)
Encinas, S., Hauser, H.: Strong resolution of singularities in characteristic zero. Comment. Math. Helv. 77(4), 821–845 (2002)
Erocal, B., Motsak, O., Schreyer, F.-O., Steenpass, A.: Refined algorithms to compute syzygies. J. Symb. Comput 74, 308–327 (2016)
Frühbis-Krüger, A.: Computational aspects of singularities. In: Singularities in Geometry and Topology, pp. 253–327. World Sci. Publ., Hackensack (2007)
Frühbis-Krüger, A.: resolve.lib - A Singular library for the resolution of singularities (2015). Available in the Singular distribution, http://www.singular.uni-kl.de
The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.7.9 (2015)
Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes – Combinatorics and Computation, pp. 43–74. Birkhäuser, Basel (2000)
Grauert, H., Remmert, R., Stellenalgebren, A.: Analytische Stellenalgebren. Springer, New York (1971). Unter Mitarbeit von O. Riemenschneider, Die Grundlehren der
Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/
Greuel, G.-M., Laplagne, S., Seelisch, F.: Normalization of rings. J. Symbolic Comput. 45(9), 887–901 (2010)
Greuel, G.-M., Laplagne, S., Seelisch, F.: normal.lib - A Singular library for normalization (2010). Available in the Singular distribution, http://www.singular.uni-kl.de
Hampe, S.: a-tint: a polymake extension for algorithmic tropical intersection theory. European J. Combin. 36, 579–607 (2014)
Hart, B.: ANTIC: Algebraic number theory in C. Comput. Algebra Rundbrief 56, 10–12 (2015)
Hart, W., Johansson, F., Pancratz, S.: FLINT: Fast Library for Number Theory (2013). Version 2.4.0, http://flintlib.org
Huneke, C., Swanson, I.: Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note Series, vol. 336. Cambridge University Press, Cambridge (2006)
Keicher, S.: Computing the GIT-fan. Internat. J. Algebra Comput. 22(7), 11 (2012). Article ID 1250064
Ren, Y.: polymake.so - A Singular module for interfacing with polymake (2015). Available in the Singular distribution, http://www.singular.uni-kl.de
Schreyer, F.-O.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstraßschen Divisionssatz und eine Anwendung auf analytische Cohen-Macaulay-Stellenalgebren minimaler Multiplizität. Diploma thesis, Universität Hamburg (1980)
Serre, J.-P.: Bases normales autoduales et groupes unitaires en caractéristique 2. Transform. Groups 19(2), 643–698 (2014)
Steenpaß, A.: parallel.lib - A Singular library for parallel computations (2015). Available in the Singular distribution, https://www.singular.uni-kl.de
The homalg project authors. The \(\mathtt{{homalg}}\) project - Algorithmic Homological Algebra (2003–2014). http://homalg.math.rwth-aachen.de/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Böhm, J., Decker, W., Keicher, S., Ren, Y. (2016). Current Challenges in Developing Open Source Computer Algebra Systems. In: Kotsireas, I., Rump, S., Yap, C. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2015. Lecture Notes in Computer Science(), vol 9582. Springer, Cham. https://doi.org/10.1007/978-3-319-32859-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-32859-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32858-4
Online ISBN: 978-3-319-32859-1
eBook Packages: Computer ScienceComputer Science (R0)