Abstract
Let k be a field of characteristic 2, and let L/k be a finite Galois extension, with Galois group G. We show the equivalence of the following two properties:
(∗) The group G is generated by elements of order 2 and by elements of odd order.
(∗∗) There exists x ∈ L such that Tr(x) = 1 and Tr(x.g(x)) = 0 for every g ∈ G, g = 1.
Similar content being viewed by others
Références
C. Arf, Untersuchungen über quadratische Formen in Körpern der Charak-teristik 2, J. Crelle 183 (1941), 148-167.
M. Barakat, Computations of unitary groups in characteristic 2, http://www.mathematik.uni-kl.de/∼barakat/forJPSerre/UnitaryGroup.pdf
E. Bayer-Fluckiger, Self-dual normal bases I, Indag. Math. 51 (1989), 379-383.
E. Bayer-Fluckiger, H. W. Lenstra, Jr., Forms in odd degree extensions and self-dual normal bases, Amer. J. Math. 112 (1990), 359-373.
E. Bayer-Fluckiger, R. Parimala, J-P. Serre, Hasse principle for G-trace forms, Izv. RAN, Ser. matem. 77 (2013), no. 3, 5-28 (Izvestiya: Mathematics 77 (2013), no. 3, 437-460).
E. Bayer-Fluckiger, J-P. Serre, Torsions quadratiques et bases normales au-toduales, Amer. J. Math. 116 (1994), 1-64.
A. Borel, Linear Algebraic Groups, 2nd enlarged edition, Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, New York, 1991.
A. Borel, J-P. Serre, Théorèmes de finitude en cohomologie galoisienne, Comm. Math. Helv. 39 (1964), 111-164 (=A. Borel, Oe. 64).
A. Borel, J. Tits, Groupes réductifs, Publ. Math. IHES 27 (1965), 55-150 (=A. Borel, Oe. 66 et J. Tits, Oe. 61).
S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebn. Math. (3 Folge), Bd. 21, Springer-Verlag, Berlin, 1990.
N. Bourbaki, Espaces Vectoriels Topologiques, Chapitre II, Ensembles con-vexes et espaces localement convexes, Masson, Paris, 1981 et Springer-Verlag, Berlin 2007 ; traduction anglaise, Springer-Verlag, Berlin, 1987.
N. Bourbaki, Algèbre, Chapitre V, Corps commutatifs, Masson, Paris, 1981 et Springer-Verlag, Berlin, 2006 ; traduction anglaise, Springer-Verlag, Berlin, 1998.
N. Bourbaki, Algèbre Commutative, Chapitre IX, Anneaux locaux noethé-riens complets, Masson, Paris, 1983 et Springer-Verlag, Berlin, 2006. [A VIII] N. Bourbaki, Algèbre, Chapitre VIII, Anneaux et modules semi-simples, nouvelle édition révisée, Springer-Verlag, Berlin, 2011.
V. Bovdi, A. L. Rosa, On the order of the unitary subgroup of a modular group algebra, Comm. Algebra 28 (2000), 1897-1905.
W. Burnside, Theory of Groups of Finite Order, 2nd edition, The University Press, Cambridge, 1911 et Dover Publ., New York, 1955.
C. Chevalley, Classification des groupes de Lie algébriques, Séminaire ENS 1956-1958, Secrétariat math., IHP, 1958 ; édition révisée par P. Cartier, Classification des Groupes Algébriques Semi-simples, Springer-Verlag, Berlin, 2005.
B. Conrad, O. Gabber, G. Prasad, Pseudo-reductive Groups, New Mathematical Monographs, Vol. 17, Cambridge Univ. Press, Cambridge, 2010.
C. W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics, Vol. XI, Intersc. Publ., New York, 1962.
M. Demazure, A. Grothendieck, Schémas en Groupes, 3 vol., Lecture Notes in Mathematics, Vols. 151, 152, 153, Springer-Verlag, Berlin, 1970 ; édition révisée par P. Gille et P. Polo, Documents Mathématiques 7, ?, 8, 2011, 201?, 2011. Société Mathématique de France, Paris,
W. Feit, The Representation Theory of Finite Groups, North-Holland Mathematical Library, Vol. 25, North-Holland Publ., Amsterdam, 1982.
W. Fulton, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Bd. 2, Springer-Verlag, Berlin, 1984.
P. Gille, L. Moret-Bailly, Actions algébriques de groupes arithmétiques, in: Torsors, Étale Homotopy and Applications to Rational Points, éditeur A. Skorobogatov, L.M.S. Lect. Notes 405 (2013), 231-249.
B. Huppert, Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften, Bd. 134, Springer-Verlag, Berlin, 1967.
J. C. Jantzen, Representations of Algebraic Groups, 2nd edition, Mathematical Surveys and Monographs, Vol. 107, American Mathematical Society, Providence, RI, 2003.
M. Knus, A. Merkurjev, M. Rost, J-P. Tignol, The Book of Involutions, American Mathematical Society Colloquium Publications, Vol. 44, American Mathematical Society, Providence, RI, 1998.
S. Lang, Algebraic groups over finite fields, Amer. J. Math. 78 (1956), 555-563.
G. Malle, D. Testerman, Linear Algebraic Groups and Finite Groups of Lie Type, Cambridge Studies in Advanced Mathematics, Vol. 133, Cambridge University Press, Cambridge, 2011.
M. Rosenlicht, On quotient varieties and the affine embedding of certain homogeneous spaces, Amer. J. Math. 83 (1961), 211-223.
J-P. Serre, Cohomologie galoisienne des groupes algébriques linéaires, Colloque sur la théorie des groupes algébriques, Bruxelles (1962), 53-68 (=Oe. 53).
J-P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics, Vol. 5, Springer-Verlag, Berlin, 1964 ; cinquième édition révisée et complétée, Springer-Verlag, Berlin, 1994 ; traduction anglaise, Galois Cohomology, Springer-Verlag, Berlin, 1997.
J-P. Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1968 ; cinquième édition corrigée et augmentée, Hermann, Paris, 1998 ; traduction anglaise, Linear Representations of Finite Groups, Graduate Texts in Mathematics, Vol. 42. Springer-Verlag, New York, 1977.
J-P. Serre, BL-bases and unitary groups in characteristic 2, Oberwolfach Reports 2 (2005), 37-40.
T. A. Springer, Linear Algebraic Groups, 2nd edition, Progress in Mathematics, Vol. 9, Birkhäuser Boston, Boston, MA, 1998.
R. Steinberg, Lectures on Chevalley Groups, Notes polycopiées, Yale University, 1967.
R. Steinberg, Torsion in reductive groups, Adv. Math. 15 (1975), 63-92 (=C.P. 415-444).
A. Vasiu, Normal, unipotent subgroup schemes of reductive groups, C. R. Acad. Sci. Paris 341 (2005), 79-84.
W. C. Waterhouse, Introduction to Affine Group Schemes, Graduate Texts in Mathematics, Vol. 66, Springer-Verlag, New York, 1979.
A. Weil, Adeles and Algebraic Groups, I.A.S. Princeton, 1961 ; Progress in Mathematics, Vol. 23, Birkhäuser, Boston, Mass., 1982.
Author information
Authors and Affiliations
Corresponding author
Additional information
E. B. Dynkin pour son 90-ième anniversaire
Rights and permissions
About this article
Cite this article
SERRE, JP. BASES NORMALES AUTODUALES ET GROUPES UNITAIRES EN CARACT ÉRISTIQUE 2. Transformation Groups 19, 643–698 (2014). https://doi.org/10.1007/s00031-014-9269-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00031-014-9269-6