[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

BASES NORMALES AUTODUALES ET GROUPES UNITAIRES EN CARACT ÉRISTIQUE 2

  • Published:
Transformation Groups Aims and scope Submit manuscript

An Erratum to this article was published on 04 February 2015

Abstract

Let k be a field of characteristic 2, and let L/k be a finite Galois extension, with Galois group G. We show the equivalence of the following two properties:

(∗) The group G is generated by elements of order 2 and by elements of odd order.

(∗∗) There exists x ∈ L such that Tr(x) = 1 and Tr(x.g(x)) = 0 for every g ∈ G, g = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Références

  1. C. Arf, Untersuchungen über quadratische Formen in Körpern der Charak-teristik 2, J. Crelle 183 (1941), 148-167.

    MathSciNet  Google Scholar 

  2. M. Barakat, Computations of unitary groups in characteristic 2, http://www.mathematik.uni-kl.de/∼barakat/forJPSerre/UnitaryGroup.pdf

  3. E. Bayer-Fluckiger, Self-dual normal bases I, Indag. Math. 51 (1989), 379-383.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Bayer-Fluckiger, H. W. Lenstra, Jr., Forms in odd degree extensions and self-dual normal bases, Amer. J. Math. 112 (1990), 359-373.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Bayer-Fluckiger, R. Parimala, J-P. Serre, Hasse principle for G-trace forms, Izv. RAN, Ser. matem. 77 (2013), no. 3, 5-28 (Izvestiya: Mathematics 77 (2013), no. 3, 437-460).

  6. E. Bayer-Fluckiger, J-P. Serre, Torsions quadratiques et bases normales au-toduales, Amer. J. Math. 116 (1994), 1-64.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Borel, Linear Algebraic Groups, 2nd enlarged edition, Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, New York, 1991.

    Book  Google Scholar 

  8. A. Borel, J-P. Serre, Théorèmes de finitude en cohomologie galoisienne, Comm. Math. Helv. 39 (1964), 111-164 (=A. Borel, Oe. 64).

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Borel, J. Tits, Groupes réductifs, Publ. Math. IHES 27 (1965), 55-150 (=A. Borel, Oe. 66 et J. Tits, Oe. 61).

    Article  Google Scholar 

  10. S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebn. Math. (3 Folge), Bd. 21, Springer-Verlag, Berlin, 1990.

    Book  Google Scholar 

  11. N. Bourbaki, Espaces Vectoriels Topologiques, Chapitre II, Ensembles con-vexes et espaces localement convexes, Masson, Paris, 1981 et Springer-Verlag, Berlin 2007 ; traduction anglaise, Springer-Verlag, Berlin, 1987.

  12. N. Bourbaki, Algèbre, Chapitre V, Corps commutatifs, Masson, Paris, 1981 et Springer-Verlag, Berlin, 2006 ; traduction anglaise, Springer-Verlag, Berlin, 1998.

  13. N. Bourbaki, Algèbre Commutative, Chapitre IX, Anneaux locaux noethé-riens complets, Masson, Paris, 1983 et Springer-Verlag, Berlin, 2006. [A VIII] N. Bourbaki, Algèbre, Chapitre VIII, Anneaux et modules semi-simples, nouvelle édition révisée, Springer-Verlag, Berlin, 2011.

  14. V. Bovdi, A. L. Rosa, On the order of the unitary subgroup of a modular group algebra, Comm. Algebra 28 (2000), 1897-1905.

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Burnside, Theory of Groups of Finite Order, 2nd edition, The University Press, Cambridge, 1911 et Dover Publ., New York, 1955.

  16. C. Chevalley, Classification des groupes de Lie algébriques, Séminaire ENS 1956-1958, Secrétariat math., IHP, 1958 ; édition révisée par P. Cartier, Classification des Groupes Algébriques Semi-simples, Springer-Verlag, Berlin, 2005.

  17. B. Conrad, O. Gabber, G. Prasad, Pseudo-reductive Groups, New Mathematical Monographs, Vol. 17, Cambridge Univ. Press, Cambridge, 2010.

    Book  Google Scholar 

  18. C. W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics, Vol. XI, Intersc. Publ., New York, 1962.

    Google Scholar 

  19. M. Demazure, A. Grothendieck, Schémas en Groupes, 3 vol., Lecture Notes in Mathematics, Vols. 151, 152, 153, Springer-Verlag, Berlin, 1970 ; édition révisée par P. Gille et P. Polo, Documents Mathématiques 7, ?, 8, 2011, 201?, 2011. Société Mathématique de France, Paris,

  20. W. Feit, The Representation Theory of Finite Groups, North-Holland Mathematical Library, Vol. 25, North-Holland Publ., Amsterdam, 1982.

    Google Scholar 

  21. W. Fulton, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Bd. 2, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  22. P. Gille, L. Moret-Bailly, Actions algébriques de groupes arithmétiques, in: Torsors, Étale Homotopy and Applications to Rational Points, éditeur A. Skorobogatov, L.M.S. Lect. Notes 405 (2013), 231-249.

  23. B. Huppert, Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften, Bd. 134, Springer-Verlag, Berlin, 1967.

  24. J. C. Jantzen, Representations of Algebraic Groups, 2nd edition, Mathematical Surveys and Monographs, Vol. 107, American Mathematical Society, Providence, RI, 2003.

    Google Scholar 

  25. M. Knus, A. Merkurjev, M. Rost, J-P. Tignol, The Book of Involutions, American Mathematical Society Colloquium Publications, Vol. 44, American Mathematical Society, Providence, RI, 1998.

    Google Scholar 

  26. S. Lang, Algebraic groups over finite fields, Amer. J. Math. 78 (1956), 555-563.

    Article  MATH  MathSciNet  Google Scholar 

  27. G. Malle, D. Testerman, Linear Algebraic Groups and Finite Groups of Lie Type, Cambridge Studies in Advanced Mathematics, Vol. 133, Cambridge University Press, Cambridge, 2011.

    Book  Google Scholar 

  28. M. Rosenlicht, On quotient varieties and the affine embedding of certain homogeneous spaces, Amer. J. Math. 83 (1961), 211-223.

    MathSciNet  Google Scholar 

  29. J-P. Serre, Cohomologie galoisienne des groupes algébriques linéaires, Colloque sur la théorie des groupes algébriques, Bruxelles (1962), 53-68 (=Oe. 53).

  30. J-P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics, Vol. 5, Springer-Verlag, Berlin, 1964 ; cinquième édition révisée et complétée, Springer-Verlag, Berlin, 1994 ; traduction anglaise, Galois Cohomology, Springer-Verlag, Berlin, 1997.

  31. J-P. Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1968 ; cinquième édition corrigée et augmentée, Hermann, Paris, 1998 ; traduction anglaise, Linear Representations of Finite Groups, Graduate Texts in Mathematics, Vol. 42. Springer-Verlag, New York, 1977.

  32. J-P. Serre, BL-bases and unitary groups in characteristic 2, Oberwolfach Reports 2 (2005), 37-40.

    Google Scholar 

  33. T. A. Springer, Linear Algebraic Groups, 2nd edition, Progress in Mathematics, Vol. 9, Birkhäuser Boston, Boston, MA, 1998.

    Google Scholar 

  34. R. Steinberg, Lectures on Chevalley Groups, Notes polycopiées, Yale University, 1967.

  35. R. Steinberg, Torsion in reductive groups, Adv. Math. 15 (1975), 63-92 (=C.P. 415-444).

    Article  MATH  Google Scholar 

  36. A. Vasiu, Normal, unipotent subgroup schemes of reductive groups, C. R. Acad. Sci. Paris 341 (2005), 79-84.

    Article  MATH  MathSciNet  Google Scholar 

  37. W. C. Waterhouse, Introduction to Affine Group Schemes, Graduate Texts in Mathematics, Vol. 66, Springer-Verlag, New York, 1979.

    Book  Google Scholar 

  38. A. Weil, Adeles and Algebraic Groups, I.A.S. Princeton, 1961 ; Progress in Mathematics, Vol. 23, Birkhäuser, Boston, Mass., 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JEAN-PIERRE SERRE.

Additional information

E. B. Dynkin pour son 90-ième anniversaire

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SERRE, JP. BASES NORMALES AUTODUALES ET GROUPES UNITAIRES EN CARACT ÉRISTIQUE 2. Transformation Groups 19, 643–698 (2014). https://doi.org/10.1007/s00031-014-9269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-014-9269-6

Keywords

Navigation