Abstract
Knowing how and when trends are formed is a frequently visited research goal. In our work, we focus on the progression of trends through (social) networks. We use a random graph (RG) model to mimic the progression of a trend through the network. The context of the trend is not included in our model. We show that every state of the RG model maps to a state of the Polya process. We find that the limit of the component size distribution of the RG model shows power-law behaviour. These results are also supported by simulations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Altshuler, Y., Pan, W., Pentland, A.S.: Trends prediction using social diffusion models. In: Yang, S.J., Greenberg, A.M., Endsley, M. (eds.) SBP 2012. LNCS, vol. 7227, pp. 97–104. Springer, Heidelberg (2012)
Bauckhage, C., Kersting, K., Hadiji, F.: Parameterizing the distance distribution of undirected networks. In: Proceedings of UAI (2015)
Bhamidi, S., Steele, J.M., Zaman, T.: Twitter Event Networks and the Superstar Model. arXiv preprint arXiv:1211.3090 (2012)
Bhattacharya, D., Ram, S.: Sharing news articles using 140 characters: a diffusion analysis on twitter. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 966–971. IEEE (2012)
Carton, S., Adar, E., Park, S., Mei, Q., Zeffer, N., Resnick, P.: Audience analysis for competing memes in social media. In: Ninth International AAAI Conference on Web and Social Media (2015)
Chung, F., Handjani, S., Jungreis, D.: Generalizations of polya’s urn problem. Ann. Comb. 7(2), 141–153 (2003)
Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)
Ewens, W.J.: Mathematical Population Genetics 1: Theoretical Introduction, vol. 27. Springer Science & Business Media, New York (2012)
Ferrara, E., JafariAsbagh, M., Varol, O., Qazvinian, V., Menczer, F., Flammini, A.: Clustering memes in social media. In: 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 548–555. IEEE (2013)
Friggeri, A., Adamic, L., Eckles, D., Cheng, J.: Rumor cascades (2014). http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8122
Gleeson, J.P., Cellai, D., Onnela, J.P., Porter, M.A., Reed-Tsochas, F.: A simple generative model of collective online behavior. Proc. Natl. Acad. Sci. 111(29), 10411–10415 (2014)
Guille, A., Hacid, H., Favre, C., Zighed, D.A.: Information diffusion in online social networks: a survey. ACM SIGMOD Rec. 42(2), 17–28 (2013)
Hoang, T.A., Lim, E.P.: Virality and susceptibility in information diffusions. In: ICWSM (2012)
Iwata, T., Shah, A., Ghahramani, Z.: Discovering latent influence in online social activities via shared cascade poisson processes. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, pp. 266–274. ACM, New York (2013). http://doi.acm.org/10.1145/2487575.2487624
Kupavskii, A., Ostroumova, L., Umnov, A., Usachev, S., Serdyukov, P., Gusev, G., Kustarev, A.: Prediction of retweet cascade size over time. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 2335–2338. ACM (2012)
Lehmann, J., Gonçalves, B., Ramasco, J.J., Cattuto, C.: Dynamical classes of collective attention in Twitter. In: Proceedings of the 21st International Conference on World Wide Web, pp. 251–260. ACM (2012)
Lerman, K., Ghosh, R.: Information Contagion: An Empirical Study of the Spread of News on Digg and Twitter Social Networks (2010)
Pemantle, R., et al.: A survey of random processes with reinforcement. Probab. Surv. 4, 1–79 (2007)
Rattanaritnont, G., Toyoda, M., Kitsuregawa, M.: A study on relationships between information cascades and popular topics in twitter. DEIM Forum 7(5), 1–6 (2012). http://db-event.jpn.org/deim2012/proceedings/final-pdf/c7-5.pdf
Redner, S.: How popular is your paper? an empirical study of the citation distribution. Eur. Phys. J. B Condens. Matter Complex Syst. 4(2), 131–134 (1998). http://dx.doi.org/10.1007/s100510050359
Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on Twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 695–704. ACM (2011)
Sadikov, E., Martinez, M.M.M.: Information propagation on Twitter. CS322 Project Report (2009)
Simon, H.A.: On a class of skew distribution functions. Biometrika 42, 425–440 (1955)
ten Thij, M., Ouboter, T., Worm, D., Litvak, N., van den Berg, H., Bhulai, S.: Modelling of trends in twitter using retweet graph dynamics. In: Bonato, A., Graham, F.C., Prałat, P. (eds.) WAW 2014. LNCS, vol. 8882, pp. 132–147. Springer, Heidelberg (2014)
Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. 99(9), 5766–5771 (2002)
Wu, S., Raschid, L.: Prediction in a microblog hybrid network using bonacich potential. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, WSDM 2014, pp. 383–392. ACM, New York (2014). http://doi.acm.org/10.1145/2556195.2556247
Yule, G.U.: A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis, F.R.S. Philos. Trans. R. Soc. Lond. Ser. B Containing Pap. Biol. Character 213, 21–87 (1925)
Zaman, T.R., Herbrich, R., Stern, D.: Predicting information spreading in twitter. In: Social Science and the Wisdom of Crowds Workshop, vol. 55, pp. 1–4. Citeseer (2010). http://research.microsoft.com/pubs/141866/NIPS10_Twitter_final.pdf
Zubiaga, A., Spina, D., Fresno, V., Martínez, R.: Classifying trending topics: a typology of conversation triggers on Twitter. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 2461–2464. ACM (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
ten Thij, M., Bhulai, S. (2016). Modelling Trend Progression Through an Extension of the Polya Urn Process. In: Wierzbicki, A., Brandes, U., Schweitzer, F., Pedreschi, D. (eds) Advances in Network Science. NetSci-X 2016. Lecture Notes in Computer Science(), vol 9564. Springer, Cham. https://doi.org/10.1007/978-3-319-28361-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-28361-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28360-9
Online ISBN: 978-3-319-28361-6
eBook Packages: Computer ScienceComputer Science (R0)