[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Modelling Trend Progression Through an Extension of the Polya Urn Process

  • Conference paper
  • First Online:
Advances in Network Science (NetSci-X 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9564))

Included in the following conference series:

Abstract

Knowing how and when trends are formed is a frequently visited research goal. In our work, we focus on the progression of trends through (social) networks. We use a random graph (RG) model to mimic the progression of a trend through the network. The context of the trend is not included in our model. We show that every state of the RG model maps to a state of the Polya process. We find that the limit of the component size distribution of the RG model shows power-law behaviour. These results are also supported by simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altshuler, Y., Pan, W., Pentland, A.S.: Trends prediction using social diffusion models. In: Yang, S.J., Greenberg, A.M., Endsley, M. (eds.) SBP 2012. LNCS, vol. 7227, pp. 97–104. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Bauckhage, C., Kersting, K., Hadiji, F.: Parameterizing the distance distribution of undirected networks. In: Proceedings of UAI (2015)

    Google Scholar 

  3. Bhamidi, S., Steele, J.M., Zaman, T.: Twitter Event Networks and the Superstar Model. arXiv preprint arXiv:1211.3090 (2012)

  4. Bhattacharya, D., Ram, S.: Sharing news articles using 140 characters: a diffusion analysis on twitter. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 966–971. IEEE (2012)

    Google Scholar 

  5. Carton, S., Adar, E., Park, S., Mei, Q., Zeffer, N., Resnick, P.: Audience analysis for competing memes in social media. In: Ninth International AAAI Conference on Web and Social Media (2015)

    Google Scholar 

  6. Chung, F., Handjani, S., Jungreis, D.: Generalizations of polya’s urn problem. Ann. Comb. 7(2), 141–153 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ewens, W.J.: Mathematical Population Genetics 1: Theoretical Introduction, vol. 27. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  9. Ferrara, E., JafariAsbagh, M., Varol, O., Qazvinian, V., Menczer, F., Flammini, A.: Clustering memes in social media. In: 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 548–555. IEEE (2013)

    Google Scholar 

  10. Friggeri, A., Adamic, L., Eckles, D., Cheng, J.: Rumor cascades (2014). http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8122

  11. Gleeson, J.P., Cellai, D., Onnela, J.P., Porter, M.A., Reed-Tsochas, F.: A simple generative model of collective online behavior. Proc. Natl. Acad. Sci. 111(29), 10411–10415 (2014)

    Article  Google Scholar 

  12. Guille, A., Hacid, H., Favre, C., Zighed, D.A.: Information diffusion in online social networks: a survey. ACM SIGMOD Rec. 42(2), 17–28 (2013)

    Article  Google Scholar 

  13. Hoang, T.A., Lim, E.P.: Virality and susceptibility in information diffusions. In: ICWSM (2012)

    Google Scholar 

  14. Iwata, T., Shah, A., Ghahramani, Z.: Discovering latent influence in online social activities via shared cascade poisson processes. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, pp. 266–274. ACM, New York (2013). http://doi.acm.org/10.1145/2487575.2487624

  15. Kupavskii, A., Ostroumova, L., Umnov, A., Usachev, S., Serdyukov, P., Gusev, G., Kustarev, A.: Prediction of retweet cascade size over time. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 2335–2338. ACM (2012)

    Google Scholar 

  16. Lehmann, J., Gonçalves, B., Ramasco, J.J., Cattuto, C.: Dynamical classes of collective attention in Twitter. In: Proceedings of the 21st International Conference on World Wide Web, pp. 251–260. ACM (2012)

    Google Scholar 

  17. Lerman, K., Ghosh, R.: Information Contagion: An Empirical Study of the Spread of News on Digg and Twitter Social Networks (2010)

    Google Scholar 

  18. Pemantle, R., et al.: A survey of random processes with reinforcement. Probab. Surv. 4, 1–79 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rattanaritnont, G., Toyoda, M., Kitsuregawa, M.: A study on relationships between information cascades and popular topics in twitter. DEIM Forum 7(5), 1–6 (2012). http://db-event.jpn.org/deim2012/proceedings/final-pdf/c7-5.pdf

    Google Scholar 

  20. Redner, S.: How popular is your paper? an empirical study of the citation distribution. Eur. Phys. J. B Condens. Matter Complex Syst. 4(2), 131–134 (1998). http://dx.doi.org/10.1007/s100510050359

    Article  Google Scholar 

  21. Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on Twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 695–704. ACM (2011)

    Google Scholar 

  22. Sadikov, E., Martinez, M.M.M.: Information propagation on Twitter. CS322 Project Report (2009)

    Google Scholar 

  23. Simon, H.A.: On a class of skew distribution functions. Biometrika 42, 425–440 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  24. ten Thij, M., Ouboter, T., Worm, D., Litvak, N., van den Berg, H., Bhulai, S.: Modelling of trends in twitter using retweet graph dynamics. In: Bonato, A., Graham, F.C., Prałat, P. (eds.) WAW 2014. LNCS, vol. 8882, pp. 132–147. Springer, Heidelberg (2014)

    Google Scholar 

  25. Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. 99(9), 5766–5771 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, S., Raschid, L.: Prediction in a microblog hybrid network using bonacich potential. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, WSDM 2014, pp. 383–392. ACM, New York (2014). http://doi.acm.org/10.1145/2556195.2556247

  27. Yule, G.U.: A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis, F.R.S. Philos. Trans. R. Soc. Lond. Ser. B Containing Pap. Biol. Character 213, 21–87 (1925)

    Article  Google Scholar 

  28. Zaman, T.R., Herbrich, R., Stern, D.: Predicting information spreading in twitter. In: Social Science and the Wisdom of Crowds Workshop, vol. 55, pp. 1–4. Citeseer (2010). http://research.microsoft.com/pubs/141866/NIPS10_Twitter_final.pdf

  29. Zubiaga, A., Spina, D., Fresno, V., Martínez, R.: Classifying trending topics: a typology of conversation triggers on Twitter. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 2461–2464. ACM (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijn ten Thij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

ten Thij, M., Bhulai, S. (2016). Modelling Trend Progression Through an Extension of the Polya Urn Process. In: Wierzbicki, A., Brandes, U., Schweitzer, F., Pedreschi, D. (eds) Advances in Network Science. NetSci-X 2016. Lecture Notes in Computer Science(), vol 9564. Springer, Cham. https://doi.org/10.1007/978-3-319-28361-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28361-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28360-9

  • Online ISBN: 978-3-319-28361-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics