[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Toward Building a Content-Based Video Recommendation System Based on Low-Level Features

  • Conference paper
  • First Online:
E-Commerce and Web Technologies (EC-Web 2015)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 239))

Included in the following conference series:

Abstract

One of the challenges in video recommendation systems is the New Item problem, which happens when the system is unable to recommend video items, that no information is available about them. For example, in the popular movie-sharing websites, such as Youtube, everyday, hundred millions of hours of videos are uploaded and big portion of these videos may not contain any meta-data, to be used by the system to generate recommendations.

In this paper, we address this problem by proposing a method, that is based on automatic analysis of the video content in order to extract a number representative low-level visual features. Such features are then used to generate personalized content-based recommendations. Our evaluation shows that our proposed method can outperform the baselines, by producing more relevant recommendations. Hence, a set low-level features extracted automatically can be more descriptive and informative of the video content than a set of high-level expert annotated features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Datasets – grouplens. http://grouplens.org/datasets/, Accessed: 01 May, 2015

  2. Youtube. http://www.youtube.com. Accessed: 01 April, 2015

  3. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  4. Ahn, J.-W., Brusilovsky, P., Grady, J., He, D., Syn, S.Y.: Open user profiles for adaptive news systems: help or harm? In: Proceedings of the 16th international conference on World Wide Web, pp. 11–20. ACM (2007)

    Google Scholar 

  5. Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  6. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  7. Billsus, D., Pazzani, M.J.: User modeling for adaptive news access. User Model. User-Adap. Inter. 10(2–3), 147–180 (2000)

    Article  Google Scholar 

  8. Bogdanov, D., Herrera, P.: How much metadata do we need in music recommendation? a subjective evaluation using preference sets. In: ISMIR, pp. 97–102 (2011)

    Google Scholar 

  9. Bogdanov, D., Serrà, J., Wack, N., Herrera, P., Serra, X.: Unifying low-level and high-level music similarity measures. IEEE Trans. Multimedia 13(4), 687–701 (2011)

    Article  Google Scholar 

  10. Brezeale, D., Cook, D.J.: Automatic video classification: a survey of the literature. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(3), 416–430 (2008)

    Article  Google Scholar 

  11. Burke, R.: Hybrid recommender systems: Survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)

    Article  MATH  Google Scholar 

  12. Cantador, I., Szomszor, M., Alani, H., Fernández, M., Castells, P.: Enriching ontological user profiles with tagging history for multi-domain recommendations (2008)

    Google Scholar 

  13. Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst. (TOIS) 22(1), 143–177 (2004)

    Article  Google Scholar 

  14. Elahi, M., Ricci, F., Rubens, N.: Active learning strategies for rating elicitation in collaborative filtering: a system-wide perspective. ACM Trans. Intell. Syst. Technol. (TIST) 5(1), 13 (2013)

    Google Scholar 

  15. Horn, B.K., Schunck, B.G.: Determining optical flow. In: 1981 Technical Symposium East, pp. 319–331. International Society for Optics and Photonics (1981)

    Google Scholar 

  16. Hu, W., Xie, N., Li, L., Zeng, X., Maybank, S.: A survey on visual content-based video indexing and retrieval. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41(6), 797–819 (2011)

    Article  Google Scholar 

  17. Knees, P., Pohle, T., Schedl, M., Widmer, G.: A music search engine built upon audio-based and web-based similarity measures. In: Proceedings of the 30th annual international ACM SIGIR conference on Research and Development in Information Retrieval, pp. 447–454. ACM (2007)

    Google Scholar 

  18. Lehinevych, T., Kokkinis-Ntrenis, N., Siantikos, G., Dogruöz, A.S., Giannakopoulos, T., Konstantopoulos, S.: Discovering similarities for content-based recommendation and browsing in multimedia collections

    Google Scholar 

  19. Lops, P., De Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological user profiling in recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 54–88 (2004)

    Article  Google Scholar 

  21. Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the Fifth ACM Conference on Digital libraries, pp. 195–204. ACM (2000)

    Google Scholar 

  22. Pazzani, M.J., Billsus, D.: Content-based Recommendation Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Rasheed, Z., Shah, M.: Video categorization using semantics and semiotics. In: Rosenfeld, A., Doermann, D., DeMenthon, D. (eds.) Video Mining, pp. 185–217. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Rasheed, Z., Sheikh, Y., Shah, M.: On the use of computable features for film classification. IEEE Trans. Circ. Syst. Video Technol. 15(1), 52–64 (2005)

    Article  Google Scholar 

  25. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 1–35. Springer Verlag, Heidelberg (2011)

    Chapter  Google Scholar 

  26. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 1–35. Springer Verlag, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Seyerlehner, K., Schedl, M., Pohle, T., Knees, P.: Using block-level features for genre classification, tag classification and music similarity estimation. Submission to Audio Music Similarity and Retrieval Task of MIREX 2010 (2010)

    Google Scholar 

  28. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 4:2 (2009)

    Article  Google Scholar 

  29. Radu, V.: Application. In: Radu, V. (ed.) Stochastic Modeling of Thermal Fatigue Crack Growth. ACM, vol. 1, pp. 63–70. Springer, Heidelberg (2015)

    Google Scholar 

  30. Yang, B., Mei, T., Hua, X.-S., Yang, L., Yang, S.-Q., Li, M.: Online video recommendation based on multimodal fusion and relevance feedback. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 73–80. ACM (2007)

    Google Scholar 

  31. Zhao, X., Li, G., Wang, M., Yuan, J., Zha, Z.-J., Li, Z., Chua, T.-S.: Integrating rich information for video recommendation with multi-task rank aggregation. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 1521–1524. ACM (2011)

    Google Scholar 

  32. Zhou, H., Hermans, T., Karandikar, A.V., Rehg, J.M.: Movie genre classification via scene categorization. In: Proceedings of the International Conference on Multimedia, pp. 747–750. ACM (2010)

    Google Scholar 

Download references

Acknowledgments

This work is supported by Telecom Italia S.p.A., Open Innovation Department, Joint Open Lab S-Cube, Milan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashar Deldjoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Deldjoo, Y., Elahi, M., Quadrana, M., Cremonesi, P. (2015). Toward Building a Content-Based Video Recommendation System Based on Low-Level Features. In: Stuckenschmidt, H., Jannach, D. (eds) E-Commerce and Web Technologies. EC-Web 2015. Lecture Notes in Business Information Processing, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-319-27729-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27729-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27728-8

  • Online ISBN: 978-3-319-27729-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics