[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Personalized Micro-Video Recommendation via Hierarchical User Interest Modeling

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2017 (PCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10735))

Included in the following conference series:

  • 3116 Accesses

Abstract

The increasing prevalence of micro-videos on the Internet requires efficient recommendation mechanisms to help users to find interesting micro-videos. In this paper, we propose a novel personalized micro-video recommendation method using hierarchical user interest modeling based on multi-modal features. Specifically, multi-modal features, including visual, acoustic, textual, emotional and social features, are extracted from micro-videos to model user interests on three levels. The user interest scores on different levels are fused to recommend the micro-videos satisfying users’ personalized interests. The experimental results on a micro-video dataset crawled from Vine show that our method outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.ee.columbia.edu/~subh/Software.php.

  2. 2.

    http://live.ece.utexas.edu/.

  3. 3.

    https://rankzoo.com/.

References

  1. Xu, Q., Huang, Q., Jiang, T., Yan, B., Lin, W., Yao, Y.: Hodgerank on random graphs for subjective video quality assessment. IEEE Trans. Multimedia 14(3), 844–857 (2012)

    Article  Google Scholar 

  2. Bao, B.K., Liu, G., Xu, C., Yan, S.: Inductive robust principal component analysis. IEEE Trans. Image Process. 21(8), 3794–3800 (2012)

    Article  MathSciNet  Google Scholar 

  3. Liu, S., Liang, X., Liu, L., Lu, K., Lin, L., Cao, X., Yan, S.: Fashion parsing with video context. IEEE Trans. Multimedia 17(8), 1347–1358 (2015)

    Article  Google Scholar 

  4. Chen, J.: Multi-modal learning: study on a large-scale micro-video data collection. In: ACM International Conference on Multimedia. ACM, pp. 1454–1458 (2016)

    Google Scholar 

  5. Nguyen, P.X., Rogez, G., Fowlkes, C., Ramanan, D.: The open world of micro-videos. arXiv preprint arXiv:1603.09439 (2016)

  6. Min, W., Bao, B.K., Xu, C., Hossain, M.S.: Cross-platform multi-modal topic modeling for personalized inter-platform recommendation. IEEE Trans. Multimedia 17(10), 1787–1801 (2015)

    Article  Google Scholar 

  7. Ma, J., Li, G., Zhong, M., Zhao, X., Zhu, L., Li, X.: LGA: latent genre aware micro-video recommendation on social media. Multimedia Tools Appl. 77, 2991–3008 (2017)

    Article  Google Scholar 

  8. Chen, J., Song, X., Nie, L., Wang, X., Zhang, H., Chua, T.S.: Micro tells macro: predicting the popularity of micro-videos via a transductive model. In: ACM International Conference on Multimedia, pp. 898–907 (2016)

    Google Scholar 

  9. Yan, M., Sang, J., Xu, C., Hossain, M.S.: A unified video recommendation by cross-network user modeling. ACM Trans. Multimedia Comput. Commun. Appl. 12(4), 1–24 (2016). Article No. 53

    Article  Google Scholar 

  10. Huang, Y., Cui, B., Jiang, J., Hong, K., Zhang, W., Xie, Y.: Real-time video recommendation exploration. In: ACM International Conference on Management of Data, pp. 35–46 (2016)

    Google Scholar 

  11. Krishnappa, D.K., Zink, M., Griwodz, C., Halvorsen, P.: Cache-centric video recommendation: an approach to improve the efficiency of Youtube caches. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM), 11(4) (2015). Article No. 48

    Article  Google Scholar 

  12. Zhou, P., Zhou, Y., Wu, D., Jin, H.: Differentially private online learning for cloud-based video recommendation with multimedia big data in social networks. IEEE Trans. Multimedia 18(6), 1217–1229 (2016)

    Article  Google Scholar 

  13. Sun, L., Wang, X., Wang, Z., Zhao, H., Zhu, W.: Social-aware video recommendation for online social groups. IEEE Trans. Multimedia 19(3), 609–618 (2017)

    Article  Google Scholar 

  14. Sano, S., Yamasaki, T., Aizawa, K.: Degree of loop assessment in microvideo. In: IEEE International Conference on Image Processing, pp. 5182–5186 (2014)

    Google Scholar 

  15. Redi, M., O’Hare, N., Schifanella, R., Trevisiol, M., Jaimes, A.: 6 seconds of sound and vision: Creativity in micro-videos. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4272–4279 (2014)

    Google Scholar 

  16. Huang, L., Luo, B.: Tag refinement of micro-videos by learning from multiple data sources. Multimedia Tools Appl. 76(19), 20341–20358 (2017)

    Article  Google Scholar 

  17. Borth, D., Ji, R., Chen, T., Breuel, T., Chang, S.F.: Large-scale visual sentiment ontology and detectors using adjective noun pairs. In: ACM International Conference on Multimedia, pp. 223–232 (2013)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  19. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: IEEE International Conference on Computer Vision, pp. 3551–3558 (2013)

    Google Scholar 

  20. Logan, B.: Mel frequency Cepstral coefficients for music modeling. In: International Symposium on Music Information Retrieval (2000)

    Google Scholar 

  21. Wu, B., Zhong, E., Horner, A., Yang, Q.: Music emotion recognition by multi-label multi-layer multi-instance multi-view learning. In: ACM International Conference on Multimedia, pp. 117–126 (2014)

    Google Scholar 

  22. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  23. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Proces. Manage. 24(5), 513–523 (1988)

    Article  Google Scholar 

  24. Huang, Q., Chen, B., Wang, J., Mei, T.: Personalized video recommendation through graph propagation. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM), 10(4) (2014). Article No. 32

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Science Foundation of China (61321491, 61202320), and Collaborative Innovation Center of Novel Software Technology and Industrialization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, L., Luo, B. (2018). Personalized Micro-Video Recommendation via Hierarchical User Interest Modeling. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10735. Springer, Cham. https://doi.org/10.1007/978-3-319-77380-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77380-3_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77379-7

  • Online ISBN: 978-3-319-77380-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics