Abstract
The increasing prevalence of micro-videos on the Internet requires efficient recommendation mechanisms to help users to find interesting micro-videos. In this paper, we propose a novel personalized micro-video recommendation method using hierarchical user interest modeling based on multi-modal features. Specifically, multi-modal features, including visual, acoustic, textual, emotional and social features, are extracted from micro-videos to model user interests on three levels. The user interest scores on different levels are fused to recommend the micro-videos satisfying users’ personalized interests. The experimental results on a micro-video dataset crawled from Vine show that our method outperforms the state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Xu, Q., Huang, Q., Jiang, T., Yan, B., Lin, W., Yao, Y.: Hodgerank on random graphs for subjective video quality assessment. IEEE Trans. Multimedia 14(3), 844–857 (2012)
Bao, B.K., Liu, G., Xu, C., Yan, S.: Inductive robust principal component analysis. IEEE Trans. Image Process. 21(8), 3794–3800 (2012)
Liu, S., Liang, X., Liu, L., Lu, K., Lin, L., Cao, X., Yan, S.: Fashion parsing with video context. IEEE Trans. Multimedia 17(8), 1347–1358 (2015)
Chen, J.: Multi-modal learning: study on a large-scale micro-video data collection. In: ACM International Conference on Multimedia. ACM, pp. 1454–1458 (2016)
Nguyen, P.X., Rogez, G., Fowlkes, C., Ramanan, D.: The open world of micro-videos. arXiv preprint arXiv:1603.09439 (2016)
Min, W., Bao, B.K., Xu, C., Hossain, M.S.: Cross-platform multi-modal topic modeling for personalized inter-platform recommendation. IEEE Trans. Multimedia 17(10), 1787–1801 (2015)
Ma, J., Li, G., Zhong, M., Zhao, X., Zhu, L., Li, X.: LGA: latent genre aware micro-video recommendation on social media. Multimedia Tools Appl. 77, 2991–3008 (2017)
Chen, J., Song, X., Nie, L., Wang, X., Zhang, H., Chua, T.S.: Micro tells macro: predicting the popularity of micro-videos via a transductive model. In: ACM International Conference on Multimedia, pp. 898–907 (2016)
Yan, M., Sang, J., Xu, C., Hossain, M.S.: A unified video recommendation by cross-network user modeling. ACM Trans. Multimedia Comput. Commun. Appl. 12(4), 1–24 (2016). Article No. 53
Huang, Y., Cui, B., Jiang, J., Hong, K., Zhang, W., Xie, Y.: Real-time video recommendation exploration. In: ACM International Conference on Management of Data, pp. 35–46 (2016)
Krishnappa, D.K., Zink, M., Griwodz, C., Halvorsen, P.: Cache-centric video recommendation: an approach to improve the efficiency of Youtube caches. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM), 11(4) (2015). Article No. 48
Zhou, P., Zhou, Y., Wu, D., Jin, H.: Differentially private online learning for cloud-based video recommendation with multimedia big data in social networks. IEEE Trans. Multimedia 18(6), 1217–1229 (2016)
Sun, L., Wang, X., Wang, Z., Zhao, H., Zhu, W.: Social-aware video recommendation for online social groups. IEEE Trans. Multimedia 19(3), 609–618 (2017)
Sano, S., Yamasaki, T., Aizawa, K.: Degree of loop assessment in microvideo. In: IEEE International Conference on Image Processing, pp. 5182–5186 (2014)
Redi, M., O’Hare, N., Schifanella, R., Trevisiol, M., Jaimes, A.: 6 seconds of sound and vision: Creativity in micro-videos. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4272–4279 (2014)
Huang, L., Luo, B.: Tag refinement of micro-videos by learning from multiple data sources. Multimedia Tools Appl. 76(19), 20341–20358 (2017)
Borth, D., Ji, R., Chen, T., Breuel, T., Chang, S.F.: Large-scale visual sentiment ontology and detectors using adjective noun pairs. In: ACM International Conference on Multimedia, pp. 223–232 (2013)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Wang, H., Schmid, C.: Action recognition with improved trajectories. In: IEEE International Conference on Computer Vision, pp. 3551–3558 (2013)
Logan, B.: Mel frequency Cepstral coefficients for music modeling. In: International Symposium on Music Information Retrieval (2000)
Wu, B., Zhong, E., Horner, A., Yang, Q.: Music emotion recognition by multi-label multi-layer multi-instance multi-view learning. In: ACM International Conference on Multimedia, pp. 117–126 (2014)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Proces. Manage. 24(5), 513–523 (1988)
Huang, Q., Chen, B., Wang, J., Mei, T.: Personalized video recommendation through graph propagation. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM), 10(4) (2014). Article No. 32
Acknowledgements
This work is supported by National Science Foundation of China (61321491, 61202320), and Collaborative Innovation Center of Novel Software Technology and Industrialization.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Huang, L., Luo, B. (2018). Personalized Micro-Video Recommendation via Hierarchical User Interest Modeling. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10735. Springer, Cham. https://doi.org/10.1007/978-3-319-77380-3_54
Download citation
DOI: https://doi.org/10.1007/978-3-319-77380-3_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77379-7
Online ISBN: 978-3-319-77380-3
eBook Packages: Computer ScienceComputer Science (R0)