[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Discovering Productive Periodic Frequent Patterns in Transactional Databases

  • Conference paper
  • First Online:
Data Science (ICDS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9208))

Included in the following conference series:

  • 1339 Accesses

Abstract

Periodic frequent pattern mining is an important data mining task for various decision making. However, it often presents a large number of periodic frequent patterns, most of which are not useful as their periodicities are due to random occurrence of uncorrelated items. Such periodic frequent patterns would most often be detrimental in decision making where correlations between the items of periodic frequent patterns are vital. To enable mine the periodic frequent patterns with correlated items, we employ a correlation test on periodic frequent patterns and introduce the productive periodic frequent patterns as the set of periodic frequent patterns with correlated items. We finally develop PPFP, an efficient Productive Periodic Frequent Pattern mining framework. PPFP is efficient and the productiveness measure removes the periodic frequent patterns with uncorrelated items.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: 11th IEEE International Conference on Data Engineering, pp. 3–14 IEEE (1995)

    Google Scholar 

  2. Elfeky, M.G., Aref, W.G., Elmagarmid, A.K.: Periodicity detection in time series databases. IIEEE Trans. Knowl. Data Eng. 17(7), 875–887 (2005)

    Article  Google Scholar 

  3. Uday Kiran, R., Krishna Reddy, P.: Towards efficient mining of periodic-frequent patterns in transactional databases. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part II. LNCS, vol. 6262, pp. 194–208. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Kiran, R.U., Kitsuregawa, M.: Novel techniques to reduce search space in periodic-frequent pattern mining. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014, Part II. LNCS, vol. 8422, pp. 377–391. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  5. Kiran, R.U., Reddy, P.K.: An alternative interestingness measure for mining periodic-frequent patterns. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part I. LNCS, vol. 6587, pp. 183–192. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Kumar, V., Valli Kumari, V.: Incremental mining for regular frequent patterns in vertical format. Int. J. Eng. Tech. 5(2), 1506–1511 (2013)

    Google Scholar 

  7. Rashid, M.M., Karim, M.R., Jeong, B.-S., Choi, H.-J.: Efficient mining regularly frequent patterns in transactional databases. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part I. LNCS, vol. 7238, pp. 258–271. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Rashid, M.M., Gondal, I., Kamruzzaman, J.: Regularly frequent patterns mining from sensor data stream. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013, Part II. LNCS, vol. 8227, pp. 417–424. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Surana, A., Kiran, R.U., Reddy, P.K.: An efficient approach to mine periodic-frequent patterns in transactional databases. In: Cao, L., Huang, J.Z., Bailey, J., Koh, Y.S., Luo, J. (eds.) PAKDD Workshops 2011. LNCS, vol. 7104, pp. 254–266. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-frequent patterns in transactional databases. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 242–253. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Webb, G.I.: Self-sufficient itemsets: an approach to screening potentially interesting associations between items. ACM Trans. Knowl. Discov. Data 4(1), 3:1–3:20 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Mwintieru Nofong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nofong, V.M. (2015). Discovering Productive Periodic Frequent Patterns in Transactional Databases. In: Zhang, C., et al. Data Science. ICDS 2015. Lecture Notes in Computer Science(), vol 9208. Springer, Cham. https://doi.org/10.1007/978-3-319-24474-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24474-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24473-0

  • Online ISBN: 978-3-319-24474-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics