[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Discovering Quasi-Periodic-Frequent Patterns in Transactional Databases

  • Conference paper
Big Data Analytics (BDA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8302))

Included in the following conference series:

Abstract

Periodic-frequent patterns are an important class of user-interest-based frequent patterns that exist in a transactional database. A frequent pattern can be said periodic-frequent if it appears periodically throughout the database. We have observed that it is difficult to mine periodic-frequent patterns in very large databases. The reason is that the occurrence behavior of the patterns can vary over a period of time causing periodically occurring patterns to be non-periodic and/or vice-versa. We call this problem as the “intermittence problem.” Furthermore, in some of the real-world applications, the users may be interested in only those frequent patterns that might have appeared almost periodically throughout the database. With this motivation, we relax the constraint that a pattern must appear periodically throughout the database, and introduce a new class of user-interest-based frequent patterns, called quasi-periodic-frequent patterns. Informally, a frequent pattern is said to be quasi-periodic-frequent if most of its occurrences are periodic in a database. We propose a model and a pattern-growth algorithm to discover these patterns. The proposed patterns do not satisfy the downward closure property. We have introduced three pruning techniques to reduce the computational cost of mining the patterns. Experimental results show that the proposed patterns can provide useful information and the proposed algorithm is efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Frequent itemset mining repository, http://fimi.ua.ac.be/data/

  2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD, pp. 207–216 (1993)

    Google Scholar 

  3. Antunes, C.M., Oliveira, A.L.: Temporal data mining: An overview. In: Workshop on Temporal Data Mining, KDD (2001)

    Google Scholar 

  4. Aref, W.G., Elfeky, M.G., Elmagarmid, A.K.: Incremental, online, and merge mining of partial periodic patterns in time-series databases. IEEE TKDE 16(3), 332–342 (2004)

    Google Scholar 

  5. Cheng, J., Ke, Y., Ng, W.: A survey on algorithms for mining frequent itemsets over data streams. Knowledge and Information Systems 16(1), 1–27 (2008)

    Article  MathSciNet  Google Scholar 

  6. Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time series database. In: ICDE, pp. 106–115 (1999)

    Google Scholar 

  7. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)

    Article  MathSciNet  Google Scholar 

  8. Uday Kiran, R., Krishna Reddy, P.: Towards efficient mining of periodic-frequent patterns in transactional databases. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part II. LNCS, vol. 6262, pp. 194–208. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Kiran, R.U., Reddy, P.K.: An alternative interestingness measure for mining periodic-frequent patterns. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part I. LNCS, vol. 6587, pp. 183–192. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Li, C., Yang, Q., Wang, J., Li, M.: Efficient mining of gap-constrained subsequences and its various applications. ACM Trans. Knowl. Discov. Data 6(1), 2:1–2:39 (2012)

    Google Scholar 

  11. Li, Z., Ding, B., Han, J., Kays, R., Nye, P.: Mining periodic behaviors for moving objects. In: KDD 2010, pp. 1099–1108 (2010)

    Google Scholar 

  12. Ma, S., Hellerstein, J.: Mining partially periodic event patterns with unknown periods. In: ICDE, pp. 205–214 (2001)

    Google Scholar 

  13. Özden, B., Ramaswamy, S., Silberschatz, A.: Cyclic association rules. In: ICDE, pp. 412–421. IEEE Computer Society, Washington, DC (1998)

    Google Scholar 

  14. Rashid, M. M., Karim, M. R., Jeong, B.-S., Choi, H.-J.: Efficient mining regularly frequent patterns in transactional databases. In: Lee, S.-G., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part I. LNCS, vol. 7238, pp. 258–271. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Sheng, C., Hsu, W., Lee, M.L.: Mining dense periodic patterns in time series data. In: ICDE, Washington, DC, USA, pp. 115–117 (2006)

    Google Scholar 

  16. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-frequent patterns in transactional databases. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 242–253. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Yang, J., Wang, W., Yu, P.S.: Mining asynchronous periodic patterns in time series data. IEEE Trans. on Knowl. and Data Eng. 15(3), 613–628 (2003)

    Article  Google Scholar 

  18. Yang, R., Wang, W., Yu, P.: Infominer+: mining partial periodic patterns with gap penalties. In: ICDM, pp. 725–728 (2002)

    Google Scholar 

  19. Zhang, M., Kao, B., Cheung, D.W., Yip, K.Y.: Mining periodic patterns with gap requirement from sequences. ACM Trans. Knowl. Discov. Data 1(2) (August 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Kiran, R.U., Kitsuregawa, M. (2013). Discovering Quasi-Periodic-Frequent Patterns in Transactional Databases. In: Bhatnagar, V., Srinivasa, S. (eds) Big Data Analytics. BDA 2013. Lecture Notes in Computer Science, vol 8302. Springer, Cham. https://doi.org/10.1007/978-3-319-03689-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03689-2_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03688-5

  • Online ISBN: 978-3-319-03689-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics