[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Investigation of New Statistical Features for BCI Based Sleep Stages Recognition through EEG Bio-signals

  • Conference paper
Intelligent Computing in Bioinformatics (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8590))

Included in the following conference series:

  • 3523 Accesses

Abstract

Electroencephalogram (EEG) is one of the oldest techniques available to read brain data. It is a methodology to measure and record the electrical activity of brain using sensitive sensors attached to the scalp. Brain’s electrical activity is visualized on computers in form of signals through BCI tools. It is also possible to convert these signals into digital commands to provide human-computer interaction (HCI) through adaptive user interfaces. In this study, a set of statistical features: mean entropy, skew-ness, kurtosis and mean power of wavelets are proposed to enhance human sleep stages recognition through EEG signal. Additionally, an adaptive user interface for vigilance level recognition is introduced. One-way ANOVA test is employed for feature selection. EEG signals are decomposed into frequency sub-bands using discrete wavelet transform and selected statistical features are employed in SVM for recognition of human sleep stages: stage 1, stage 3, stage REM and stage AWAKE. According to experimental results, proposed statistical features have a significant discrimination rate for true classification of sleep stages with linear SVM. The accuracy of linear SVM reaches to 93% in stage 1, 82% in stage 3, 73% in stage REM and 96% in stage AWAKE with proposed statistical features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nijholt, D., Anton, S.T.: Brain-computer interfaces (2010)

    Google Scholar 

  2. Wolpaw, J., Wolpaw, E.W.: Brain-computer interfaces: principles and practice. Oxford University Press (2012)

    Google Scholar 

  3. Rogers, Y., Sharp, H., Preece, J.: Interaction design: beyond human-computer interaction. John Wiley & Sons (2011)

    Google Scholar 

  4. Lazar, J., Feng, J.H., Hochheiser, H.: Research methods in human-computer interaction. John Wiley & Sons (2010)

    Google Scholar 

  5. Knapp, R.B., Kim, J., André, E.: Physiological signals and their use in augmenting emotion recognition for human–machine interaction. In: Emotion-Oriented Systems, pp. 133–159. Springer (2011)

    Google Scholar 

  6. Konstantinidis, E.I., Frantzidis, C.A., Pappas, C., Bamidis, P.D.: Real time emotion aware applications: a case study employing emotion evocative pictures and neuro-physiological sensing enhanced by Graphic Processor Units. Computer Methods and Programs in Biomedicine 107(1), 16–27 (2012)

    Article  Google Scholar 

  7. He, B., Gao, S., Yuan, H., Wolpaw, J.R.: Brain-Computer Interfaces. In: Neural Engineering, pp. 87–151. Springer (2013)

    Google Scholar 

  8. Valente, S., Ringwood, J., Mangourova, V., Lowry, J.: Investigation of events in the EEG signal correlated with changes in both oxygen and glucose in the brain. In: Signals and Systems Conference (ISSC 2012), pp. 1–6. IET Irish (2012)

    Google Scholar 

  9. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain–computer interfaces for communication and control. Clinical Neurophysiology 113(6), 767–791 (2002)

    Article  Google Scholar 

  10. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B., et al.: A review of classification algorithms for EEG-based brain–computer interfaces. Journal of Neural Engineering 4 (2007)

    Google Scholar 

  11. Teplan, M.: Fundamentals of EEG measurement. Measurement Science Review 2(2), 1–11 (2002)

    Google Scholar 

  12. Niedermeyer, E., Da Silva, F.H.L.: Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins (2005)

    Google Scholar 

  13. Wang, Y., Gao, X., Hong, B., Gao, S.: Practical designs of brain–computer interfaces based on the modulation of EEG rhythms. In: Brain-Computer Interfaces, pp. 137–154. Springer (2010)

    Google Scholar 

  14. Lee, J.C., Tan, D.S.: Using a low-cost electroencephalograph for task classification in HCI research. In: Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology, pp. 81–90 (2006)

    Google Scholar 

  15. Sridhar, S.S., Shivaraman, R.: Feasibility Study for Implementing Brain Computer Interface Using Electroencephalograph. In: Proceedings of International Conference on Internet Computing and Information Communications, pp. 207–218 (2014)

    Google Scholar 

  16. Jacob, R.J.K., Girouard, A., Hirshfield, L.M., Horn, M.S., Shaer, O., Solovey, E.T., Zigelbaum, J.: Reality-based interaction: unifying the new generation of interaction styles. In: CHI 2007 Extended Abstracts on Human Factors in Computing Systems, pp. 2465–2470 (2007)

    Google Scholar 

  17. Hirshfield, L.M., Solovey, E.T., Girouard, A., Kebinger, J., Jacob, R.J.K., Sassaroli, A., Fantini, S.: Brain measurement for usability testing and adaptive interfaces: an example of uncovering syntactic workload with functional near infrared spectroscopy. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2185–2194 (2009)

    Google Scholar 

  18. Curran, E.A., Stokes, M.J.: Learning to control brain activity: a review of the production and control of EEG components for driving brain-computer interface (BCI) systems. Brain and Cognition 51(3), 326–336 (2003)

    Article  Google Scholar 

  19. Kübler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J.R., Birbaumer, N.: Brain-computer communication: unlocking the locked in. Psychological Bulletin 127(3), 358–375 (2001)

    Article  Google Scholar 

  20. Nijholt, A., Tan, D.: Playing with your brain: brain-computer interfaces and games. In: Proceedings of the International Conference on Advances in Computer Entertainment Technology, pp. 305–306 (2007)

    Google Scholar 

  21. Stubler, W.F., O’Hara, J.M.: Human factors challenges for advanced process control. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 40(19), pp. 992–996 (1996)

    Google Scholar 

  22. Meister, D.: The history of human factors and ergonomics. CRC Press (1999)

    Google Scholar 

  23. Dinges, D.F.: An overview of sleepiness and accidents. Journal of Sleep Research 4(s2), 4–14 (1995)

    Article  Google Scholar 

  24. Lim, J., Dinges, D.F.: Sleep deprivation and vigilant attention. Annals of the New York Academy of Sciences 1129(1), 305–322 (2008)

    Article  Google Scholar 

  25. Ting, P.H., Hwang, J.R., Doong, J.L., Jeng, M.C.: Driver fatigue and highway driving: A simulator study. Physiology & Behavior 94(3), 448–453 (2008)

    Article  Google Scholar 

  26. Berka, C., Levendowski, D.J., Cvetinovic, M.M., Petrovic, M.M., Davis, G., Lumicao, M.N., Zivkovic, V.T., Popovic, M.V., Olmstead, R.: Real-time analysis of EEG indexes of alertness, cognition, and memory acquired with a wireless EEG headset. International Journal of Human-Computer Interaction 17(2), 151–170 (2004)

    Article  Google Scholar 

  27. Duru, D.G., Duru, A.D., Barkana, D.E., Sanli, O., Ozkan, M.: Assessment of surgeon’s stress level and alertness using EEG during laparoscopic simple nephrectomy. In: Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering, pp. 452–455 (2013)

    Google Scholar 

  28. Hansen, L.K., Hansen, S.T., Stahlhut, C.: Mobile real-time EEG imaging Bayesian inference with sparse, temporally smooth source priors. In: Proceedings of the International Winter Workshop on Brain-Computer Interface (BCI), pp. 6–7 (2013)

    Google Scholar 

  29. Johnson, R.R., Popovic, D.P., Olmstead, R.E., Stikic, M., Levendowski, D.J., Berka, C.: Drowsiness/alertness algorithm development and validation using synchronized EEG and cognitive performance to individualize a generalized model. Biological Psychology 87(2), 241–250 (2011)

    Article  Google Scholar 

  30. Liu, N.H., Chiang, C.Y., Hsu, H.M.: Improving driver alertness through music selection using a mobile EEG to detect brainwaves. Sensors 13(7), 8199–8221 (2013)

    Article  Google Scholar 

  31. Mardi, Z., Ashtiani, S.N.M., Mikaili, M.: EEG-based Drowsiness Detection for Safe Driving Using Chaotic Features and Statistical Tests. Journal of Medical Signals and Sensors 1(2), 130 (2011)

    Google Scholar 

  32. Woźniak, D., Rumian, S., Szpytko, J.: Transport device operator stress features analysis. Journal of KONES 18, 577–586 (2011)

    Google Scholar 

  33. Allen, J.J.B., Coan, J.A., Nazarian, M.: Issues and assumptions on the road from raw signals to metrics of frontal EEG asymmetry in emotion. Biological Psychology 67(1), 183–218 (2004)

    Article  Google Scholar 

  34. Guo, L., Wu, Y., Zhao, L., Cao, T., Yan, W., Shen, X.: Classification of mental task from EEG signals using immune feature weighted support vector machines. IEEE Transactions on Magnetics 47(5), 866–869 (2011)

    Article  Google Scholar 

  35. Park, Y., Luo, L., Parhi, K.K., Netoff, T.: Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Epilepsia 52(10), 1761–1770 (2011)

    Article  Google Scholar 

  36. Subasi, A., Gursoy, M.I.: EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Systems with Applications 37(12), 8659–8666 (2010)

    Article  Google Scholar 

  37. Oken, B.S., Salinsky, M.C., Elsas, S.M.: Vigilance, alertness, or sustained attention: physiological basis and measurement. Clinical Neurophysiology 117(9), 1885–1901 (2006)

    Article  Google Scholar 

  38. Silber, M.H., Ancoli-Israel, S., Bonnet, M.H., Chokroverty, S., Grigg-Damberger, M.M., Hirshkowitz, M., Kapen, S., Keenan, S.A., Kryger, M.H., Penzel, T., et al.: The visual scoring of sleep in adults. Journal of Clinical Sleep Medicine 3(2), 121–131 (2007)

    Google Scholar 

  39. Zheng, X., Yang, B., Li, X., Zan, P., Dong, Z.: Classifying EEG using incremental support vector machine in BCIs. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds.) LSMS 2010 and ICSEE 2010. LNCS, vol. 6330, pp. 604–610. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  40. Rechtschaffen, A., Kales, A.: A manual of standardized terminology, technics and scoring system for sleep stages of human subjects (1968)

    Google Scholar 

  41. Piryatinska, A., Terdik, G., Woyczynski, W.A., Loparo, K.A., Scher, M.S., Zlotnik, A.: Automated detection of neonate EEG sleep stages. Computer Methods and Programs in Biomedicine 95(1), 31–46 (2009)

    Article  Google Scholar 

  42. Vural, C., Yildiz, M.: Determination of Sleep Stage Separation Ability of Features Extracted from EEG Signals Using Principle Component Analysis. Journal of Medical Systems 34(1), 83–89 (2010)

    Article  Google Scholar 

  43. Hsu, Y.L., Yang, Y.T., Wang, J.S., Hsu, C.Y.: Automatic sleep stage recurrent neural classifier using energy features of EEG signals. Neurocomputing 104, 105–114 (2013)

    Article  Google Scholar 

  44. Koley, B., Dey, D.: An ensemble system for automatic sleep stage classification using single channel EEG signal. Computers in Biology and Medicine 42(12), 1186–1195 (2012)

    Article  Google Scholar 

  45. Bajaj, V., Pachori, R.B.: Automatic classification of sleep stages based on the time-frequency image of EEG signals. Computer Methods and Programs in Biomedicine 112(3), 320–328 (2013)

    Article  Google Scholar 

  46. Rajendra, A.U., Faust, O., Kannathal, N., Chua, T., Laxminarayan, S.: Non-linear analysis of EEG signals at various sleep stages. Computer Methods and Programs in Biomedicine 80(1), 37–45 (2005)

    Article  Google Scholar 

  47. Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., Dickhaus, H.: Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Computer Methods and Programs in Biomedicine 108(1), 10–19 (2012)

    Article  Google Scholar 

  48. Krajča, V., Petránek, S., Mohylová, J., Paul, K., Gerla, V., Lhotská, L.: Neonatal EEG sleep stages modelling by temporal profiles. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 195–201. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  49. Güneş, S., Polat, K., Yosunkaya, Ş.: Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting. Expert Systems with Applications 37(12), 7922–7928 (2010)

    Article  Google Scholar 

  50. Kerkeni, N., Alexandre, F., Bedoui, M.H., Bougrain, L., Dogui, M.: Automatic classification of sleep stages on a EEG signal by artificial neural networks. In: Proceedings of the 5th WSEAS International Conference on Signal, Speech and Image Processing (SSIP 2005), pp. 128–131. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point (2005)

    Google Scholar 

  51. Van Hese, P., Philips, W., De Koninck, J., Van de Walle, R., Lemahieu, I.: Automatic detection of sleep stages using the EEG. In: Proceedings of the 23rd Annual International Conference of the IEEE Medicine and Biology Society, vol. 2, pp. 1944–1947 (2001)

    Google Scholar 

  52. Huang, R.J., Chang, S.Y., Hsiao, Y.Y., Shih, T.S., Lee, S.D., Ting, H., Lai, C.H.: Strong Correlation of Sleep Onset between EOG and EEG Sleep Stage 1 and 2. In: Proceedings of the 2012 International Symposium on Computer, Consumer and Control (IS3C 2012), pp. 614–617. IEEE Computer Society, Washington, DC (2012)

    Chapter  Google Scholar 

  53. Krakovská, A., Mezeiová, K.: Automatic sleep scoring: A search for an optimal combination of measures. Artificial Intelligence in Medicine 53(1), 25–33 (2011)

    Article  Google Scholar 

  54. Chouvarda, I., Rosso, V., Mendez, M.O., Bianchi, A.M., Parrino, L., Grassi, A., Terzano, M., Cerutti, S.: Assessment of the EEG complexity during activations from sleep. Computer Methods and Programs in Biomedicine 104(3), e16–e28 (2011)

    Google Scholar 

  55. Ić, M., Šoda, J., Bonković, M.: Automatic classification of infant sleep based on instantaneous frequencies in a single-channel EEG signal. Computers in Biology and Medicine 43(12), 2110–2117 (2013)

    Article  Google Scholar 

  56. Brignol, A., Al-Ani, T., Drouot, X.: Phase space and power spectral approaches for EEG-based automatic sleep-wake classification in humans: A comparative study using short and standard epoch lengths. Computer Methods and Programs in Biomedicine 109(3), 227–238 (2013)

    Article  Google Scholar 

  57. Subasi, A.: Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients. Expert Systems with Applications 28(4), 701–711 (2005)

    Article  Google Scholar 

  58. Daubechies, I., Bruce, J.B.: Ten lectures on wavelets. Acoustical Society of America Journal 93, 1671 (1993)

    Article  Google Scholar 

  59. Daubechies, I.: Where do wavelets come from? A personal point of view. Proceedings of the IEEE 84(4), 510–513 (1996)

    Article  Google Scholar 

  60. Rioul, O., Martin, V.: Wavelets and signal processing. IEEE Signal Processing Magazine 8 (LCAV-ARTICLE-1991-005), 14–38 (1991)

    Google Scholar 

  61. Tabachnick, B.G., Linda, S.F.: Using multivariate statistics (2001)

    Google Scholar 

  62. Hearst, M.A., et al.: Support vector machines. IEEE Intelligent Systems and their Applications 13(4), 18–28 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sefik, I., Elibol, F., Ince, I.F., Yengin, I. (2014). Investigation of New Statistical Features for BCI Based Sleep Stages Recognition through EEG Bio-signals. In: Huang, DS., Han, K., Gromiha, M. (eds) Intelligent Computing in Bioinformatics. ICIC 2014. Lecture Notes in Computer Science(), vol 8590. Springer, Cham. https://doi.org/10.1007/978-3-319-09330-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09330-7_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09329-1

  • Online ISBN: 978-3-319-09330-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics