[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Neonatal EEG Sleep Stages Modelling by Temporal Profiles

  • Conference paper
Computer Aided Systems Theory – EUROCAST 2007 (EUROCAST 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4739))

Included in the following conference series:

Abstract

The paper deals with the application of the EEG temporal profiles for the neonatal sleep stages modelling. The temporal profiles created by adaptive segmentation and cluster analysis reflect the time structure of the EEG during different periods of sleep. They can be used for neonatal EEG quantification and for the detection of sleep stage changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bodenstein, G., Praetorius, H.M.: Feature extraction from the Electroencephalogram by adaptive segmentation. Proc. of the IEEE 65(5), 642–652 (1977)

    Article  Google Scholar 

  2. Barlow, J.S.: Computer characterization of trace´ alternant and REM patterns in the neonatal EEG by adaptive segmentation-an exploratory study. Electroenceph Clin. Neurophysiol. 60, 163–173 (1985)

    Article  Google Scholar 

  3. Krajca, V., Petranek, S., Pataková, I., Varri, A.: Automatic identification of significant graphoelements in multi-channel EEG recordings by adaptive segmentation and fuzzy clustering. Int. J. Biomed. Compute. 28, 71–89 (1991)

    Article  Google Scholar 

  4. Paul, K., Krajca, V., Roth, Z., Melichar, J., Petranek, S.: Comparison of quantitative EEG characteristics of quiet and active sleep in newborns. Sleep Medicine 4, 543–552 (2003)

    Article  Google Scholar 

  5. Paul, K., Krajča, V., Roth, Z., Melichar, J., Petránek, S.: Quantitative topographic differentiation of the neonatal EEG. Clinical Neurophysiology 117, 2050–2058 (2006)

    Article  Google Scholar 

  6. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Functions Algorithms. Plenum Press, New York (1981)

    Google Scholar 

  7. Krajča, V., Mohylová, J., Paul, K., Petránek, S.: Automatic detection of sleep stages in preterm neonates by exploring the time structure of EEG, The 3rd European Medical and Biological Conference EMBEC 2005 (November 20-25, 2005), Prague (2005)

    Google Scholar 

  8. Krajca, V., Petranek, S., Paul, K., Matousek, M., Mohylova, J., Lhotska, L.: Automatic Detection of Sleep Stages in Neonatal EEG Using the Structural Time Profiles. In: EMBC05, Proceedings of the 27th Annual International Conference of the IEEE-EMBS (September 1-4, 2005), Shanghai, China (2005)

    Google Scholar 

  9. Scher, M.S., Jones, B.L., Steppe, D.A., Cork, D.L., Seltman, H.J., Banks, D.L.: Functional brain maturation in neonates as measured by EEG-sleep analyses. Clin. Neurophysiol. 114, 875–882 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Moreno Díaz Franz Pichler Alexis Quesada Arencibia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krajča, V., Petránek, S., Mohylová, J., Paul, K., Gerla, V., Lhotská, L. (2007). Neonatal EEG Sleep Stages Modelling by Temporal Profiles. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2007. EUROCAST 2007. Lecture Notes in Computer Science, vol 4739. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75867-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75867-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75866-2

  • Online ISBN: 978-3-540-75867-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics