Abstract
For many years, multi-object tracking benchmarks have focused on a handful of categories. Motivated primarily by surveillance and self-driving applications, these datasets provide tracks for people, vehicles, and animals, ignoring the vast majority of objects in the world. By contrast, in the related field of object detection, the introduction of large-scale, diverse datasets (e.g., COCO) have fostered significant progress in developing highly robust solutions. To bridge this gap, we introduce a similarly diverse dataset for Tracking Any Object (TAO) (http://taodataset.org/). It consists of 2,907 high resolution videos, captured in diverse environments, which are half a minute long on average. Importantly, we adopt a bottom-up approach for discovering a large vocabulary of 833 categories, an order of magnitude more than prior tracking benchmarks. To this end, we ask annotators to label objects that move at any point in the video, and give names to them post factum. Our vocabulary is both significantly larger and qualitatively different from existing tracking datasets. To ensure scalability of annotation, we employ a federated approach that focuses manual effort on labeling tracks for those relevant objects in a video (e.g., those that move). We perform an extensive evaluation of state-of-the-art trackers and make a number of important discoveries regarding large-vocabulary tracking in an open-world. In particular, we show that existing single- and multi-object trackers struggle when applied to this scenario in the wild, and that detection-based, multi-object trackers are in fact competitive with user-initialized ones. We hope that our dataset and analysis will boost further progress in the tracking community.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: CVPR (2016)
Barriuso, A., Torralba, A.: Notes on image annotation. arXiv preprint arXiv:1210.3448 (2012)
Berclaz, J., Fleuret, F., Fua, P.: Robust people tracking with global trajectory optimization. In: CVPR (2006)
Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1806–1819 (2011)
Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: ICCV (2019)
Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. J. Image Video Process. 2008, 1 (2008). https://doi.org/10.1155/2008/246309
Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56
Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: ICIP (2016)
Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: CVPR (2019)
Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Robust tracking-by-detection using a detector confidence particle filter. In: ICCV (2009)
Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese” time delay neural network. In: NIPS (1994)
Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: CVPR (2017)
Caelles, S., Pont-Tuset, J., Perazzi, F., Montes, A., Maninis, K.K., Van Gool, L.: The 2019 DAVIS challenge on VOS: unsupervised multi-object segmentation. arXiv preprint arXiv:1905.00737 (2019)
Chang, M.F., et al.: Argoverse: 3D tracking and forecasting with rich maps. In: CVPR (2019)
Chen, B., Wang, D., Li, P., Wang, S., Lu, H.: Real-time ‘actor-critic’ tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 328–345. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_20
Choi, W., Savarese, S.: Multiple target tracking in world coordinate with single, minimally calibrated camera. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 553–567. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_40
Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ATOM: accurate tracking by overlap maximization. In: CVPR (2019)
Danelljan, M., Bhat, G., Shahbaz Khan, F., Felsberg, M.: ECO: efficient convolution operators for tracking. In: CVPR (2017)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)
Ess, A., Leibe, B., Schindler, K., Van Gool, L.: A mobile vision system for robust multi-person tracking. In: CVPR (2008)
Fan, H., et al.: LaSOT: a high-quality benchmark for large-scale single object tracking. In: CVPR (2019)
Feichtenhofer, C., Pinz, A., Zisserman, A.: Detect to track and track to detect. In: ICCV (2017)
Fisher, R., Santos-Victor, J., Crowley, J.: Context aware vision using image-based active recognition. EC’s Information Society Technology’s Programme Project IST2001-3754 (2001)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR (2012)
Gkioxari, G., Malik, J.: Finding action tubes. In: CVPR (2015)
Gu, C., et al.: AVA: a video dataset of spatio-temporally localized atomic visual actions. In: CVPR (2018)
Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: CVPR (2019)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
Held, D., Thrun, S., Savarese, S.: Learning to track at 100 FPS with deep regression networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 749–765. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_45
Huang, L., Zhao, X., Huang, K.: GOT-10k: a large high-diversity benchmark for generic object tracking in the wild. arXiv preprint arXiv:1810.11981 (2018)
Jiang, H., Fels, S., Little, J.J.: A linear programming approach for multiple object tracking. In: CVPR (2007)
Kang, K., et al.: Object detection in videos with tubelet proposal networks. In: CVPR (2017)
Khoreva, A., Benenson, R., Ilg, E., Brox, T., Schiele, B.: Lucid data dreaming for video object segmentation. Int. J. Comput. Vis. 127(9), 1175–1197 (2019). https://doi.org/10.1007/s11263-019-01164-6
Kristan, M., et al.: A novel performance evaluation methodology for single-target trackers. TPAMI 38(11), 2137–2155 (2016)
Leal-Taixé, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S.: Learning an image-based motion context for multiple people tracking. In: CVPR (2014)
Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of siamese visual tracking with very deep networks. In: CVPR (2019)
Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: CVPR (2018)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Lokoč, J., Kovalčík, G., Souček, T., Moravec, J., Čech, P.: A framework for effective known-item search in video. In: ACMM (2019). https://doi.org/10.1145/3343031.3351046
Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: MOT16: a benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016)
Milan, A., Rezatofighi, S.H., Dick, A., Reid, I., Schindler, K.: Online multi-target tracking using recurrent neural networks. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
Ochs, P., Malik, J., Brox, T.: Segmentation of moving objects by long term video analysis. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1187–1200 (2013)
Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR (2016)
Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: CVPR (2011)
Ren, L., Lu, J., Wang, Z., Tian, Q., Zhou, J.: Collaborative deep reinforcement learning for multi-object tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 605–621. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_36
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)
Ristani, E., Tomasi, C.: Features for multi-target multi-camera tracking and re-identification. In: CVPR (2018)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77(1–3), 157–173 (2008). https://doi.org/10.1007/s11263-007-0090-8
Scovanner, P., Tappen, M.F.: Learning pedestrian dynamics from the real world. In: ICCV (2009)
Shang, X., Di, D., Xiao, J., Cao, Y., Yang, X., Chua, T.S.: Annotating objects and relations in user-generated videos. In: ICMR (2019)
Sigurdsson, G.A., Varol, G., Wang, X., Farhadi, A., Laptev, I., Gupta, A.: Hollywood in homes: crowdsourcing data collection for activity understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 510–526. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_31
Tao, R., Gavves, E., Smeulders, A.W.: Siamese instance search for tracking. In: CVPR (2016)
Thomee, B., et al.: YFCC100M: the new data in multimedia research. arXiv preprint arXiv:1503.01817 (2015)
Valmadre, J., et al.: Long-term tracking in the wild: a benchmark. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 692–707. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_41
Voigtlaender, P., et al.: MOTS: multi-object tracking and segmentation. In: CPVR (2019)
Voigtlaender, P., Leibe, B.: Online adaptation of convolutional neural networks for video object segmentation. In: BMVC (2017)
Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online object tracking and segmentation: a unifying approach. In: CVPR (2019)
Wang, W., et al.: Learning unsupervised video object segmentation through visual attention. In: CVPR (2019)
Wen, L., et al.: UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking. arXiv preprint arXiv:1511.04136 (2015)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR (2013)
Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2
Xiao, F., Lee, Y.J.: Video object detection with an aligned spatial-temporal memory. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 494–510. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_30
Xu, N., et al.: YouTube-VOS: a large-scale video object segmentation benchmark. arXiv preprint arXiv:1809.03327 (2018)
Yang, L., Fan, Y., Xu, N.: Video instance segmentation. In: ICCV (2019)
Yu, F., et al.: BDD100K: a diverse driving dataset for heterogeneous multitask learning. In: CVPR, June 2020
Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: CVPR (2008)
Zhao, H., Torralba, A., Torresani, L., Yan, Z.: HACS: human action clips and segments dataset for recognition and temporal localization. In: ICCV (2019)
Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset. In: CVPR (2017)
Zhu, X., Wang, Y., Dai, J., Yuan, L., Wei, Y.: Flow-guided feature aggregation for video object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 408–417 (2017)
Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 103–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_7
Acknowledgements
We thank Jonathon Luiten and Ross Girshick for detailed feedback, and Nadine Chang and Kenneth Marino for reviewing early drafts. Annotations for this dataset were provided by Scale.ai. This work was supported in part by the CMU Argo AI Center for Autonomous Vehicle Research, the Inria associate team GAYA, and by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Business Center (DOI/IBC) contract number D17PC00345. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes not withstanding any copyright annotation theron. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied of IARPA, DOI/IBC or the U.S. Government.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Dave, A., Khurana, T., Tokmakov, P., Schmid, C., Ramanan, D. (2020). TAO: A Large-Scale Benchmark for Tracking Any Object. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12350. Springer, Cham. https://doi.org/10.1007/978-3-030-58558-7_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-58558-7_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58557-0
Online ISBN: 978-3-030-58558-7
eBook Packages: Computer ScienceComputer Science (R0)