[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-task Learning Approach for Intracranial Hemorrhage Prognosis

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2024)

Abstract

Prognosis after intracranial hemorrhage (ICH) is influenced by a complex interplay between imaging and tabular data. Rapid and reliable prognosis are crucial for effective patient stratification and informed treatment decision-making. In this study, we aim to enhance image-based prognosis by learning a robust feature representation shared between prognosis and the clinical and demographic variables most highly correlated with it. Our approach mimics clinical decision-making by reinforcing the model to learn valuable prognostic data embedded in the image. We propose a 3D multi-task image model to predict prognosis, Glasgow Coma Scale and age, improving accuracy and interpretability. Our method outperforms current state-of-the-art baseline image models, and demonstrates superior performance in ICH prognosis compared to four board-certified neuroradiologists using only CT scans as input. We further validate our model with interpretability saliency maps. Code is available at https://github.com/MiriamCobo/MultitaskLearning_ICH_Prognosis.git.

L. L. Iglesias and W. Silva—Both authors share Senior authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pérez del Barrio, A., et al.: Head-CT 2D/3D images with and without ICH prepared for Deep Learning (2022). https://doi.org/10.20350/digitalCSIC/14706

  2. Borys, K., et al.: Explainable AI in medical imaging: an overview for clinical practitioners-saliency-based XAI approaches. Eur. J. Radiol. 162, 110787 (2023)

    Article  Google Scholar 

  3. MONAI Consortium. MONAI: Medical Open Network for AI. Version 1.3.0 (2023). https://doi.org/10.5281/zenodo.8436376

  4. Gotkowski, K., Gonzalez, C., Bucher, A., Mukhopadhyay, A.: M3d-CAM. In: Bildverarbeitung für die Medizin 2021. I, pp. 217–222. Springer, Wiesbaden (2021). https://doi.org/10.1007/978-3-658-33198-6_52

    Chapter  Google Scholar 

  5. Gregorio, T., et al.: Assessment and comparison of the four most extensively validated prognostic scales for intracerebral hemorrhage: systematic review with meta-analysis. Neurocrit. Care 30, 449–466 (2019)

    Article  Google Scholar 

  6. Gregório, T., et al.: Prognostic models for intracerebral hemorrhage: systematic review and meta-analysis. BMC Med. Res. Methodol. 18, 1–17 (2018)

    Article  Google Scholar 

  7. Hoopes, A., et al.: SynthStrip: Skull-stripping for any brain image. NeuroImage 260, 119474 (2022)

    Article  Google Scholar 

  8. Huang, S.-C., et al.: Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ Dig. Med. 3(1), 136 (2020)

    Article  Google Scholar 

  9. Huang, S.-C., et al.: Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection. Sci. Rep. 10(1), 22147 (2020)

    Article  Google Scholar 

  10. Jain, S., Iverson, L.M.: Glasgow coma scale (2018)

    Google Scholar 

  11. Li, G., et al.: Efficient densely connected convolutional neural networks. Pattern Recogn. 109, 107610 (2021)

    Article  Google Scholar 

  12. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  13. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) : Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774. Curran Associates, Inc. (2017). https://proceedings.neurips.cc//paper/7062-a-unified-approach-tointerpreting-model-predictions.pdf

  14. Ma, W., et al.: Treatment outcome prediction for intracerebral hemorrhage via generative prognostic model with imaging and tabular data. In: Greenspan, H., et al. (eds.) MICCAI 2023, pp. 715–725. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-43904-9_69

    Chapter  Google Scholar 

  15. Magid-Bernstein, J., et al.: Cerebral hemorrhage: pathophysiology, treatment, and future directions. Circulat. Res. 130(8), 1204–1229 (2022)

    Article  Google Scholar 

  16. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., et al. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  17. Pérez del Barrio, A., et al.: A deep learning model for prognosis prediction after intracranial hemorrhage. J. Neuroimaging 33(2), 218–226 (2023)

    Article  Google Scholar 

  18. Hemorrhagic Stroke Academia Industry (HEADS) Roundtable Participants: Unmet needs and challenges in clinical research of intracerebral hemorrhage. Stroke 49(5), 1299–1307 (2018). https://doi.org/10.1161/strokeaha.117.019541

  19. la Roi-Teeuw, H.M., et al.: Don’t be misled: three misconceptions about external validation of clinical prediction models. J. Clin. Epidemiol. 172, 111387 (2024)

    Article  Google Scholar 

  20. Shan, X., et al.: GCS-ICHNet: assessment of intracerebral hemorrhage prognosis using self-attention with domain knowledge integration. In: 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2217–2222. IEEE (2023)

    Google Scholar 

  21. Silva, W., Pinto, J.R., Cardoso, J.S.: A uniform performance index for ordinal classification with imbalanced classes. In: International Joint Conference on Neural Networks (IJCNN) 2018, pp. 1–8. IEEE (2018)

    Google Scholar 

  22. Wang, J., et al.: A review of deep learning on medical image analysis. Mobile Netw. Appl. 26, 351–380 (2021)

    Article  Google Scholar 

  23. Witsch, J., et al.: Prognostication after intracerebral hemorrhage: a review. Neurological Res. Pract. 3, 1–14 (2021)

    Google Scholar 

  24. Xie, X., et al.: A survey on incorporating domain knowledge into deep learning for medical image analysis. Med. Image Anal. 69, 101985 (2021)

    Article  Google Scholar 

  25. Zhou, Y.J., et al.: A novel multi-task model imitating dermatologists for accurate differential diagnosis of skin diseases in clinical images. In: Greenspan, H., et al. (eds.) MICCAI 2023, vol. 14225, pp. 202–212. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-43987-2_20

    Chapter  Google Scholar 

Download references

Acknowledgments

M. C. would like to acknowledge the support received by the Ministry of Education of Spain (FPU grant, reference FPU21-04458). The authors would like to acknowledge the support from the project AI4EOSC “Artificial Intelligence for the European Open Science Cloud” that has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement number 101058593. The authors acknowledge the neuroradiologists Marta Drake Perez, Elena Marin Diez, and David Castanedo Vazquez from Hospital Universitario Marqués de Valdecilla (Spain) for their contribution evaluating the CT scans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Cobo .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1216 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cobo, M., Pérez del Barrio, A., Menéndez Fernández-Miranda, P., Sanz Bellón, P., Lloret Iglesias, L., Silva, W. (2025). Multi-task Learning Approach for Intracranial Hemorrhage Prognosis. In: Xu, X., Cui, Z., Rekik, I., Ouyang, X., Sun, K. (eds) Machine Learning in Medical Imaging. MLMI 2024. Lecture Notes in Computer Science, vol 15242. Springer, Cham. https://doi.org/10.1007/978-3-031-73290-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73290-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73292-8

  • Online ISBN: 978-3-031-73290-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics