[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Novel Multi-task Model Imitating Dermatologists for Accurate Differential Diagnosis of Skin Diseases in Clinical Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Skin diseases are among the most prevalent health issues, and accurate computer-aided diagnosis methods are of importance for both dermatologists and patients. However, most of the existing methods overlook the essential domain knowledge required for skin disease diagnosis. A novel multi-task model, namely DermImitFormer, is proposed to fill this gap by imitating dermatologists’ diagnostic procedures and strategies. Through multi-task learning, the model simultaneously predicts body parts and lesion attributes in addition to the disease itself, enhancing diagnosis accuracy and improving diagnosis interpretability. The designed lesion selection module mimics dermatologists’ zoom-in action, effectively highlighting the local lesion features from noisy backgrounds. Additionally, the presented cross-interaction module explicitly models the complicated diagnostic reasoning between body parts, lesion attributes, and diseases. To provide a more robust evaluation of the proposed method, a large-scale clinical image dataset of skin diseases with significantly more cases than existing datasets has been established. Extensive experiments on three different datasets consistently demonstrate the state-of-the-art recognition performance of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Binder, M., et al.: Epiluminescence microscopy: a useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists. Arch. Dermatol. 131(3), 286–291 (1995)

    Article  Google Scholar 

  2. Chen, K., Lei, W., Zhang, R., Zhao, S., Zheng, W.S., Wang, R.: PCCT: progressive class-center triplet loss for imbalanced medical image classification. arXiv preprint arXiv:2207.04793 (2022)

  3. Chen, X., Li, D., Zhang, Y., Jian, M.: Interactive attention sampling network for clinical skin disease image classification. In: Ma, H., et al. (eds.) PRCV 2021. LNCS, vol. 13021, pp. 398–410. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88010-1_33

    Chapter  Google Scholar 

  4. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  5. Gupta, K., Krishnan, M., Narayanan, A., Narayan, N.S., et al.: Dual stream network with selective optimization for skin disease recognition in consumer grade images. In: Proceedings of the International Conference on Pattern Recognition (ICPR), pp. 5262–5269. IEEE (2021)

    Google Scholar 

  6. Jalaboi, R., Faye, F., Orbes-Arteaga, M., Jørgensen, D., Winther, O., Galimzianova, A.: Dermx: an end-to-end framework for explainable automated dermatological diagnosis. Med. Image Anal. 83, 102647 (2023)

    Article  Google Scholar 

  7. Kittler, H., Pehamberger, H., Wolff, K., Binder, M.: Diagnostic accuracy of dermoscopy. Lancet Oncol. 3(3), 159–165 (2002)

    Article  Google Scholar 

  8. Kshirsagar, P.R., Manoharan, H., Shitharth, S., Alshareef, A.M., Albishry, N., Balachandran, P.K.: Deep learning approaches for prognosis of automated skin disease. Life 12(3), 426 (2022)

    Article  Google Scholar 

  9. Lei, W., Zhang, R., Yang, Y., Wang, R., Zheng, W.S.: Class-center involved triplet loss for skin disease classification on imbalanced data. In: Proceedings of the International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2020)

    Google Scholar 

  10. Li, L.F., Wang, X., Hu, W.J., Xiong, N.N., Du, Y.X., Li, B.S.: Deep learning in skin disease image recognition: a review. IEEE Access 8, 208264–208280 (2020)

    Article  Google Scholar 

  11. Liu, Y., et al.: A deep learning system for differential diagnosis of skin diseases. Nat. Med. 26(6), 900–908 (2020)

    Article  Google Scholar 

  12. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022 (2021)

    Google Scholar 

  13. Nast, A., Griffiths, C.E., Hay, R., Sterry, W., Bolognia, J.L.: The 2016 international league of dermatological societies’ revised glossary for the description of cutaneous lesions. Br. J. Dermatol. 174(6), 1351–1358 (2016)

    Article  Google Scholar 

  14. Ou, C., et al.: A deep learning based multimodal fusion model for skin lesion diagnosis using smartphone collected clinical images and metadata. Front. Surg. 9, 1029991 (2022)

    Article  Google Scholar 

  15. Pacheco, A.G., Krohling, R.A.: The impact of patient clinical information on automated skin cancer detection. Comput. Biol. Med. 116, 103545 (2020)

    Article  Google Scholar 

  16. Rogers, H.W., Weinstock, M.A., Feldman, S.R., Coldiron, B.M.: Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the us population, 2012. JAMA Dermatol. 151(10), 1081–1086 (2015)

    Article  Google Scholar 

  17. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics, 2022. CA Cancer J. Clin. 72(1), 7–33 (2022)

    Google Scholar 

  18. Sun, X., Yang, J., Sun, M., Wang, K.: A benchmark for automatic visual classification of clinical skin disease images. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 206–222. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_13

    Chapter  Google Scholar 

  19. Wang, J., Yu, X., Gao, Y.: Feature fusion vision transformer for fine-grained visual categorization. arXiv preprint arXiv:2107.02341 (2021)

  20. Wu, J., et al.: Learning differential diagnosis of skin conditions with co-occurrence supervision using graph convolutional networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 335–344. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_33

    Chapter  Google Scholar 

  21. Xu, J., et al.: Remixformer: a transformer model for precision skin tumor differential diagnosis via multi-modal imaging and non-imaging data. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 624–633. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_60

    Chapter  Google Scholar 

  22. Xu, Z., Zhuang, J., Zhang, R., Wang, R., Guo, X., Zheng, W.S.: Auxiliary decoder and classifier for imbalanced skin disease diagnosis. J. Phys. Conf. Ser. 1631(1), 012046 (2020)

    Article  Google Scholar 

  23. Yang, J., et al.: Self-paced balance learning for clinical skin disease recognition. IEEE Trans. Neural Netw. Learn. Syst. 31(8), 2832–2846 (2019)

    Article  MathSciNet  Google Scholar 

  24. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6023–6032 (2019)

    Google Scholar 

  25. Zhang, J., Xie, Y., Wu, Q., Xia, Y.: Medical image classification using synergic deep learning. Med. Image Anal. 54, 10–19 (2019)

    Article  Google Scholar 

  26. Zhang, J., Xie, Y., Xia, Y., Shen, C.: Attention residual learning for skin lesion classification. IEEE Trans. Med. Imaging 38(9), 2092–2103 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by National Key R &D Program of China (2020YFC2008703) and the Project of Intelligent Management Software for Multimodal Medical Big Data for New Generation Information Technology, the Ministry of Industry and Information Technology of the People’s Republic of China (TC210804V).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Jie Zhou or Yu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, YJ. et al. (2023). A Novel Multi-task Model Imitating Dermatologists for Accurate Differential Diagnosis of Skin Diseases in Clinical Images. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14225. Springer, Cham. https://doi.org/10.1007/978-3-031-43987-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43987-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43986-5

  • Online ISBN: 978-3-031-43987-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics