[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

EndoUIC: Promptable Diffusion Transformer for Unified Illumination Correction in Capsule Endoscopy

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Wireless Capsule Endoscopy (WCE) is highly valued for its non-invasive and painless approach, though its effectiveness is compromised by uneven illumination from hardware constraints and complex internal dynamics, leading to overexposed or underexposed images. While researchers have discussed the challenges of low-light enhancement in WCE, the issue of correcting for different exposure levels remains underexplored. To tackle this, we introduce EndoUIC, a WCE unified illumination correction solution using an end-to-end promptable diffusion transformer (DiT) model. In our work, the illumination prompt module shall navigate the model to adapt to different exposure levels and perform targeted image enhancement, in which the Adaptive Prompt Integration (API) and Global Prompt Scanner (GPS) modules shall further boost the concurrent representation learning between the prompt parameters and features. Besides, the U-shaped restoration DiT model shall capture the long-range dependencies and contextual information for unified illumination restoration. Moreover, we present a novel Capsule-endoscopy Exposure Correction (CEC) dataset, including ground-truth and corrupted image pairs annotated by expert photographers. Extensive experiments against a variety of state-of-the-art (SOTA) methods on four datasets showcase the effectiveness of our proposed method and components in WCE illumination restoration, and the additional downstream experiments further demonstrate its utility for clinical diagnosis and surgical assistance. The code and the proposed dataset are available at github.com/longbai1006/EndoUIC.

L. Bai, T. Chen, Q. Tan—Co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 129.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baek, J.H., Kim, D., Choi, S.M., Lee, H.j., Kim, H., Koh, Y.J.: Luminance-aware color transform for multiple exposure correction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6156–6165 (2023)

    Google Scholar 

  2. Bai, L., Chen, T., Wu, Y., Wang, A., Islam, M., Ren, H.: LLCaps: learning to illuminate low-light capsule endoscopy with curved wavelet attention and reverse diffusion. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. MICCAI 2023. LNCS, vol. 14229. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43999-5_4

  3. Coelho, P., Pereira, A., Leite, A., Salgado, M., Cunha, A.: A deep learning approach for red lesions detection in video capsule endoscopies. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 553–561. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_63

    Chapter  Google Scholar 

  4. García-Vega, A., et al.: A novel hybrid endoscopic dataset for evaluating machine learning-based photometric image enhancement models. In: Pichardo Lagunas, O., Martínez-Miranda, J., Martínez Seis, B. (eds.) Advances in Computational Intelligence. MICAI 2022. LNCS(), vol. 13612. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19493-1_22

  5. García-Vega, A., et al.: Multi-scale structural-aware exposure correction for endoscopic imaging. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2023)

    Google Scholar 

  6. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  7. Huang, J., et al.: Exposure normalization and compensation for multiple-exposure correction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6043–6052 (2022)

    Google Scholar 

  8. Huang, J., et al.: Deep fourier-based exposure correction network with spatial-frequency interaction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13679. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19800-7_10

  9. Jiang, H., Luo, A., Fan, H., Han, S., Liu, S.: Low-light image enhancement with wavelet-based diffusion models. ACM Trans. Graph. 42(6), 1–14 (2023)

    Google Scholar 

  10. Li, B., Liu, X., Hu, P., Wu, Z., Lv, J., Peng, X.: All-in-one image restoration for unknown corruption. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17452–17462 (2022)

    Google Scholar 

  11. Li, Y., Hou, Q., Zheng, Z., Cheng, M.M., Yang, J., Li, X.: Large selective kernel network for remote sensing object detection (2023). arXiv preprint arXiv:2303.09030

  12. Li, Z., Lei, Y., Ma, C., Zhang, J., Shan, H.: Prompt-in-prompt learning for universal image restoration (2023). arXiv preprint arXiv:2312.05038

  13. Liu, Y., et al.: VMamba: Visual state space model (2024). arXiv preprint arXiv:2401.10166

  14. Long, M., Li, Z., Xie, X., Li, G., Wang, Z.: Adaptive image enhancement based on guide image and fraction-power transformation for wireless capsule endoscopy. IEEE Trans. Biomed. Circuits Syst. 12(5), 993–1003 (2018)

    Article  Google Scholar 

  15. Ma, Y., et al.: Cycle structure and illumination constrained GAN for medical image enhancement. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 667–677. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_64

    Chapter  Google Scholar 

  16. Moghtaderi, S., Yaghoobian, O., Wahid, K.A., Lukong, K.E.: Endoscopic image enhancement: wavelet transform and guided filter decomposition-based fusion approach. J. Imaging 10(1), 28 (2024)

    Article  Google Scholar 

  17. Mou, E., et al.: Global and local enhancement of low-light endoscopic images (2023)

    Google Scholar 

  18. Potlapalli, V., Zamir, S.W., Khan, S., Khan, F.S.: PromptiR: Prompting for all-in-one blind image restoration. arXiv preprint arXiv:2306.13090 (2023)

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Rukundo, O., Pedersen, M., Hovde, Ø., et al.: Advanced image enhancement method for distant vessels and structures in capsule endoscopy. Comput. Math. Methods Med. 2017, 9813165 (2017)

    Google Scholar 

  21. Smedsrud, P.H., et al.: Kvasir-capsule, a video capsule endoscopy dataset. Sci. Data 8(1), 142 (2021)

    Article  Google Scholar 

  22. Wang, G., Bai, L., Wu, Y., Chen, T., Ren, H.: Rethinking exemplars for continual semantic segmentation in endoscopy scenes: Entropy-based mini-batch pseudo-replay. Comput. Biol. Med. 165, 107412 (2023)

    Article  Google Scholar 

  23. Wang, L., Yang, Q., Wang, C., Wang, W., Pan, J., Su, Z.: Learning a coarse-to-fine diffusion transformer for image restoration (2023). arXiv preprint arXiv:2308.08730

  24. Wang, L., Wu, B., Wang, X., Zhu, Q., Xu, K.: Endoscopic image luminance enhancement based on the inverse square law for illuminance and retinex. Int. J. Med. Robot. Comput. Assist. Surg. 18(4), e2396 (2022)

    Article  Google Scholar 

  25. Xue, M., He, J., He, Y., Liu, Z., Wang, W., Zhou, M.: Low-light image enhancement via clip-fourier guided wavelet diffusion (2024). arXiv preprint arXiv:2401.03788

  26. Yang, K.F., Cheng, C., Zhao, S.X., Yan, H.M., Zhang, X.S., Li, Y.J.: Learning to adapt to light. Int. J. Comput. Vision 131(4), 1022–1041 (2023)

    Article  Google Scholar 

  27. Yin, Y., Xu, D., Tan, C., Liu, P., Zhao, Y., Wei, Y.: CLE diffusion: controllable light enhancement diffusion model. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 8145–8156 (2023)

    Google Scholar 

  28. Yue, G., Gao, J., Cong, R., Zhou, T., Li, L., Wang, T.: Deep pyramid network for low-light endoscopic image enhancement. IEEE Trans. Circ. Syst. Video Technol. 34(5), 3834–3845 (2023)

    Google Scholar 

  29. Zamir, S.W., et al.: Learning enriched features for fast image restoration and enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 45(2), 1934–1948 (2022)

    Article  Google Scholar 

  30. Zhang, Y., Bai, L., Liu, L., Ren, H., Meng, M.Q.H.: Deep reinforcement learning-based control for stomach coverage scanning of wireless capsule endoscopy. In: 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 01–06. IEEE (2022)

    Google Scholar 

  31. Zhou, D., Yang, Z., Yang, Y.: Pyramid diffusion models for low-light image enhancement (2023). arXiv preprint arXiv:2305.10028

  32. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Hong Kong RGC GRF 14211420, CRF C4063-18G, NSFC/RGC Joint Research Scheme N_CUHK420/22; Shenzhen-HK-Macau Technology Research Programme (Type C) STIC Grant 202108233000303; Regional Joint Fund Project 2021B1515120035 (B.02.21.00101) of Guangdong Basic and Applied Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Ren .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 624 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, L. et al. (2024). EndoUIC: Promptable Diffusion Transformer for Unified Illumination Correction in Capsule Endoscopy. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15007. Springer, Cham. https://doi.org/10.1007/978-3-031-72104-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72104-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72103-8

  • Online ISBN: 978-3-031-72104-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics