[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Deep Learning Approach for Red Lesions Detection in Video Capsule Endoscopies

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10882))

Included in the following conference series:

Abstract

The wireless capsule endoscopy has revolutionized early diagnosis of small bowel diseases. However, a single examination has up to 10 h of video and requires between 30–120 min to read. Computational methods are needed to increase both efficiency and accuracy of the diagnosis. In this paper, an evaluation of deep learning U-Net architecture is presented, to detect and segment red lesions in the small bowel. Its results were compared with those obtained from the literature review. To make the evaluation closer to those used in clinical environments, the U-Net was also evaluated in an annotated sequence by using the Suspected Blood Indicator tool (SBI). Results found that detection and segmentation using U-Net outperformed both the algorithms used in the literature review and the SBI tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    At the time of submission these datasets were waiting for publication approval from the Ethical Council. In case of approval it will be available at https://rdm.inesctec.pt/dataset/nis-2018-003.

References

  1. Buscaglia, J.M., Giday, S.A., Kantsevoy, S.V., Clarke, J.O., Magno, P., Yong, E., Mullin, G.E.: Performance characteristics of the suspected blood indicator feature in capsule endoscopy according to indication for study. Clin. Gastroenterol. Hepatol. 6(3), 298–301 (2008). http://linkinghub.elsevier.com/retrieve/pii/S1542356507012062

    Article  Google Scholar 

  2. Figueiredo, I.N., Kumar, S., Leal, C., Figueiredo, P.N.: Computer-assisted bleeding detection in wireless capsule endoscopy images. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 1(4), 198–210 (2013). http://www.tandfonline.com/doi/abs/10.1080/21681163.2013.796164

    Article  Google Scholar 

  3. Iakovidis, D.K., Koulaouzidis, A.: Software for enhanced video capsule endoscopy: challenges for essential progress. Nat. Rev. Gastroenterol. Hepatol. 12(3), 172–186 (2015). http://dx.doi.org/10.1038/nrgastro.2015.13%5Cn10.1038/nrgastro.2015.13

    Article  Google Scholar 

  4. Koulaouzidis, A., Iakovidis, D.K., Karargyris, A., Plevris, J.N.: Optimizing lesion detection in small-bowel capsule endoscopy: from present problems to future solutions. Expert Rev. Gastroenterol. Hepatol. 9(2), 217–235 (2015)

    Article  Google Scholar 

  5. Koulaouzidis, A., Iakovidis, D.K., Yung, D.E., Rondonotti, E., Kopylov, U., Plevris, J.N., Toth, E., Eliakim, A., Wurm Johansson, G., Marlicz, W., Mavrogenis, G., Nemeth, A., Thorlacius, H., Tontini, G.E.: KID Project: an internet-based digital video atlas of capsule endoscopy for research purposes. Endosc. Int. Open 5(6), E477–E483 (2017). http://www.thieme-connect.de/DOI/DOI?10.1055/s-0043-105488

    Article  Google Scholar 

  6. Park, S.C., Chun, H.J., Kim, E.S., Keum, B., Seo, Y.S., Kim, Y.S., Jeen, Y.T., Lee, H.S., Um, S.H., Kim, C.D., Ryu, H.S.: Sensitivity of the suspected blood indicator: an experimental study. World J. Gastroenterol (WJG) 18(31), 4169–4174 (2012)

    Article  Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. Med. Image Comput. Comput. Assisted Interv. (MICCAI) 15(1), 348–356 (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Article  Google Scholar 

  8. Sainju, S., Bui, F.M., Wahid, K.A.: Automated bleeding detection in capsule endoscopy videos using statistical features and region growing. J. Med. Syst. 38(4), 25 (2014). http://link.springer.com/10.1007/s10916-014-0025-1

    Article  Google Scholar 

  9. Seguí, S., Drozdzal, M., Pascual, G., Radeva, P., Malagelada, C., Azpiroz, F., Vitrià, J.: Generic feature learning for wireless capsule endoscopy analysis. Comput. Biol. Med. 79, 163–172 (2016). http://linkinghub.elsevier.com/retrieve/pii/S0010482516302712

    Article  Google Scholar 

  10. Spada, C., Hassan, C., Munoz-Navas, M., Neuhaus, H., Deviere, J., Fockens, P., Coron, E., Gay, G., Toth, E., Riccioni, M.E., Carretero, C., Charton, J.P., Van Gossum, A., Wientjes, C.A., Sacher-Huvelin, S., Delvaux, M., Nemeth, A., Petruzziello, L., de Frias, C.P., Mayershofer, R., Aminejab, L., Dekker, E., Galmiche, J.P., Frederic, M., Johansson, G.W., Cesaro, P., Costamagna, G.: Second-generation colon capsule endoscopy compared with colonoscopy. Gastrointest. Endosc. 74(3), 581–589 (2011). http://dx.doi.org/10.1016/j.gie.2011.03.1125

    Article  Google Scholar 

  11. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15(1) (2015). https://doi.org/10.1186/s12880-015-0068-x

  12. Tuba, E., Tuba, M., Jovanovic, R.: An algorithm for automated segmentation for bleeding detection in endoscopic images. In: International Joint Conference on Neural Networks (IJCNN), pp. 4579–4586. IEEE, May 2017. http://ieeexplore.ieee.org/document/7966437/

  13. Usman, M.A., Satrya, G., Usman, M.R., Shin, S.Y.: Detection of small colon bleeding in wireless capsule endoscopy videos. Comput. Med. Imaging Graph. 54, 16–26 (2016). https://doi.org/10.1016/j.compmedimag.2016.09.005

    Article  Google Scholar 

  14. Wilcox, C.M., Cryer, B.L., Henk, H.J., Zarotsky, V., Zlateva, G.: Mortality associated with gastrointestinal bleeding events: comparing short-term clinical outcomes of patients hospitalized for upper GI bleeding and acute myocardial infarction in a US managed care setting. Clin. Exp. Gastroenterol. 2, 21–30 (2009). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108636/

    Google Scholar 

  15. Xiong, Y., Zhu, Y., Pang, Z., Ma, Y., Chen, D., Wang, X.: Bleeding detection in wireless capsule endoscopy based on MST clustering and SVM. In: IEEE Workshop on Signal Processing Systems (SiPS), vol. 35, pp. 1–4. IEEE, October 2015. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7345001

  16. Yung, D.E., Sykes, C., Koulaouzidis, A.: The validity of suspected blood indicator software in capsule endoscopy: a systematic review and meta-analysis. Expert Rev. Gastroenterol. Hepatol. 11(1), 43–51 (2017). https://www.tandfonline.com/doi/full/10.1080/17474124.2017.1257384

    Article  Google Scholar 

Download references

Acknowledgments

This work is financed by the ERDF – European Regional Development Fund through the Operational Program for Competitiveness and Internationalization - COMPETE 2020 Program within project POCI-01-0145-FEDER-006961, and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia as part of project UID/EEA/50014/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Coelho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coelho, P., Pereira, A., Leite, A., Salgado, M., Cunha, A. (2018). A Deep Learning Approach for Red Lesions Detection in Video Capsule Endoscopies. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93000-8_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92999-6

  • Online ISBN: 978-3-319-93000-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics