Abstract
The paper deals with modelling of UAS flight paths in the real operating environment of UNFICYP peacekeeping mission. The aim of the model is to optimize the flight paths of both one UAS and group of UAS in order to increase the effectiveness of monitoring and surveillance of defined area of responsibility while respecting the mandate, real spatial conditions, operational requirements and restrictions of UNFICYP. In the paper applied model transforms stabilization tactical activity monitoring and surveillance into the problem of planning UAS flight paths in a graph created from path points distributed in a defined AOR. The article consists of four chapters. The first two chapters formulate a research problem, illustrate the applied research methodology, identify and evaluate current negative areas of the subject of research and point out the causes and consequences of this status. The next two chapters represent the main scientific and experimental part of the paper. Attention is paid to defining criteria and operational requirements for UAS, and the final chapter presents modelling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Some of the information is not mentioned in the article due to its possible sensitivity.
- 2.
Each NAI is represented by a specific OPFOR position (e.g. military base, camp or sentry box) containing different facilities (e.g. firing positions, trench systems, shelters, etc.).
- 3.
AOR includes a defined part of the BZ (with an area of approx. 10 km2), namely OPFOR positions (in the number of dozens of pieces) located usually outside the BZ (units up to hundreds of meters from the BZ boundaries) and an area extending max. 1 km from the BZ borders to the depth of the inland. Each AOR is the responsibility of a specific unit (usually in platoon size).
- 4.
OPFOR also protests the helicopter’s short-term weather-caused flight path “deviation” outside of the airspace of BZ during the landing maneuver on the HLS.
References
Varecha, J.: Revolúcia vo vojenských záležitostiach. In: Hrnčiar, M. (ed.) National and International Security 2018, vol. 9, pp. 500–506. Akadémia ozbrojených síl gen. M. R. Štefánika, Liptovský Mikuláš (2018)
Varecha, J.: Konvenčný konflikt a satelitné systémy. In: Majchút, I. (ed.) National and International Security 2019, vol. 10, pp. 534–543. Akadémia ozbrojených síl gen. M. R. Štefánika, Liptovský Mikuláš (2019)
Zahradníček, P., Rak, L., Zezula, J.: Budoucí prostředí a robotické autonomní systémy. Vojenské reflexie 17(2), 56–72 (2022)
Ivan, J., Potužák, L., Šotnar, J.: Artillery survey for autonomous weapon systems and basic requirements on survey units. Vojenské rozhledy 28(4), 063–077 (2019)
Rak, L., Hradský, Ĺ.: Application of design thinking in the university of defence student´s learning process. In: Goméz Chova, L. (ed.) ICERI 2022, vol. 15, no. 1, pp. 1324–1328. IATED, Seville (2022)
Stodola, P., Drozd, J., Nohel, J., Hodický, J., Procházka, D.: Trajectory optimization in a cooperative aerial reconnaissance model. Sensors 19(12), 2823 (2019)
Drozd, J., Stodola, P., Křišťálová, D., Kozůbek, J.: Experiments with the UAS reconnaissance model in the real environment. In: Mazal, J. (ed.) MESAS 2017. LNCS, vol. 10756, pp. 340–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76072-8_24
Blaha, M., Šilinger, K., Potužák, L.: Linear and angular issues in perspective artillery fire control system. In: MATEC Web Conference, vol. 210, p. 02055. EDP Sciences (2018)
Hošková-Mayerová, Š, Talhofer, V., Otřísal, P., Rybanský, M.: Influence of weights of geographical factors on the results of multicriteria analysis in solving spatial analyses. ISPRS Int. J. Geo-Inf. 9(8), 489 (2020)
Mazal, J., et al.: Modelling of the microrelief impact to the cross country movement. In: Bottani, I. (ed.) HMS 2020, pp. 66–70 (2020)
Hrdina, J., Vašík, P., Procházka, J., Kutěj, L., Ščurek, R.: The weighted core of games based on tactical decisions. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) MESAS 2019. LNCS, vol. 11995, pp. 244–252. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43890-6_19
Drozd, J., Rak, L., Zahradníček, P., Stodola, P., Hodický, J.: Effectiveness evaluation of aerial reconnaissance in battalion force protection operation using the constructive simulation. J. Defense Model. Simul. 20(2), 181–196 (2023)
Kompan, J.: Mierové a bezpečnostné aktivity OSN ako základný kameň úsilia NATO na podporu mieru. In: Spilý, P. (ed.) National and International Security 2020, vol. 11, pp. 195–202. Akadémia ozbrojených síl gen. M. R. Štefánika, Liptovský Mikuláš (2020)
UNFICYP Mandate. UNFICYP. https://unficyp.unmissions.org/unficyp-mandate. Accessed 22 May 2023
Majchút, I.: Impact of significant external actors on Cyprus conflict solution. Politické vedy 21(1), 58–76 (2018)
Majchút, I., Hrnčiar, M.: Cyprus-dimenzie konfliktu, 1st edn. Akadémie ozbrojených síl gen. M. R. Štefánika, Liptovský Mikuláš (2014)
UNFICYP - Peace Keeping Mission in Cyprus. Military Aviation Reachout (MAR). https://milavreachout.org/unficyp-peace-keeping-mission-in-cyprus/. Accessed 23 June 2023
Kompan, J.: Využitie distribučných úloh pri plánovaní ženijnej podpory mobility v stabilizačných aktivitách. Vojenské reflexie 13(2), 7–20 (2018)
Dorn, A.W.: Electronic eyes on the green line: surveillance by the United Nations peacekeeping force in Cyprus. Intell. Natl. Secur. 29(2), 184–207 (2014)
Stodola, P.: Improvement in the model of cooperative aerial reconnaissance used in the tactical decision support system. J. Defense Model. Simul. 14(4), 483–492 (2017)
Stodola, P., Drozd, J., Mazal, J., Hodický, J., Procházka, D.: Cooperative unmanned aerial system reconnaissance in a complex urban environment and uneven terrain. Sensors 19(17), 3754 (2019)
Stodola, P., Kozůbek, J., Drozd, J.: Using unmanned aerial systems in military operations for autonomous reconnaissance. In: Mazal, J. (ed.) MESAS 2018. LNCS, vol. 11472, pp. 514–529. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14984-0_38
Stodola, P.: Unmanned surveillance problem: mathematical formulation, solution algorithms and experiments. Mil. Oper. Res. 25(2), 31–47 (2020)
Stodola, P., Drozd, J., Nohel, J.: Model of surveillance in complex environment using a swarm of unmanned aerial vehicles. In: Mazal, J., Fagiolini, A., Vasik, P., Turi, M. (eds.) MESAS 2020. LNCS, vol. 12619, pp. 231–249. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70740-8_15
Stodola, P., Mazal, J.: Model of optimal cooperative reconnaissance and its solution using metaheuristic methods. Defence Sci. J. 67(5), 529–535 (2017)
RQ-11B Raven. Official United States Air Force Website. https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104533/rq-11b-raven/. Accessed 19 June 2023
Raven® B RQ-11. AV AeroVironment. https://www.avinc.com/uas/raven. Accessed 19 June 2023
JUMP 20. AV AeroVironment. https://www.avinc.com/uas/jump-20. Accessed 19 June 2023
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hrnčiar, M., Turaj, M., Nohel, J., Stodola, P. (2025). UAS Flight Path Optimization Model for Effective Monitoring and Surveillance of the Buffer Zone in the UNFICYP Peacekeeping Mission. In: Mazal, J., et al. Modelling and Simulation for Autonomous Systems. MESAS 2023. Lecture Notes in Computer Science, vol 14615. Springer, Cham. https://doi.org/10.1007/978-3-031-71397-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-71397-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71396-5
Online ISBN: 978-3-031-71397-2
eBook Packages: Computer ScienceComputer Science (R0)