[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

UAS Flight Path Optimization Model for Effective Monitoring and Surveillance of the Buffer Zone in the UNFICYP Peacekeeping Mission

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2023)

Abstract

The paper deals with modelling of UAS flight paths in the real operating environment of UNFICYP peacekeeping mission. The aim of the model is to optimize the flight paths of both one UAS and group of UAS in order to increase the effectiveness of monitoring and surveillance of defined area of responsibility while respecting the mandate, real spatial conditions, operational requirements and restrictions of UNFICYP. In the paper applied model transforms stabilization tactical activity monitoring and surveillance into the problem of planning UAS flight paths in a graph created from path points distributed in a defined AOR. The article consists of four chapters. The first two chapters formulate a research problem, illustrate the applied research methodology, identify and evaluate current negative areas of the subject of research and point out the causes and consequences of this status. The next two chapters represent the main scientific and experimental part of the paper. Attention is paid to defining criteria and operational requirements for UAS, and the final chapter presents modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Some of the information is not mentioned in the article due to its possible sensitivity.

  2. 2.

    Each NAI is represented by a specific OPFOR position (e.g. military base, camp or sentry box) containing different facilities (e.g. firing positions, trench systems, shelters, etc.).

  3. 3.

    AOR includes a defined part of the BZ (with an area of approx. 10 km2), namely OPFOR positions (in the number of dozens of pieces) located usually outside the BZ (units up to hundreds of meters from the BZ boundaries) and an area extending max. 1 km from the BZ borders to the depth of the inland. Each AOR is the responsibility of a specific unit (usually in platoon size).

  4. 4.

    OPFOR also protests the helicopter’s short-term weather-caused flight path “deviation” outside of the airspace of BZ during the landing maneuver on the HLS.

References

  1. Varecha, J.: Revolúcia vo vojenských záležitostiach. In: Hrnčiar, M. (ed.) National and International Security 2018, vol. 9, pp. 500–506. Akadémia ozbrojených síl gen. M. R. Štefánika, Liptovský Mikuláš (2018)

    Google Scholar 

  2. Varecha, J.: Konvenčný konflikt a satelitné systémy. In: Majchút, I. (ed.) National and International Security 2019, vol. 10, pp. 534–543. Akadémia ozbrojených síl gen. M. R. Štefánika, Liptovský Mikuláš (2019)

    Google Scholar 

  3. Zahradníček, P., Rak, L., Zezula, J.: Budoucí prostředí a robotické autonomní systémy. Vojenské reflexie 17(2), 56–72 (2022)

    Article  Google Scholar 

  4. Ivan, J., Potužák, L., Šotnar, J.: Artillery survey for autonomous weapon systems and basic requirements on survey units. Vojenské rozhledy 28(4), 063–077 (2019)

    Article  Google Scholar 

  5. Rak, L., Hradský, Ĺ.: Application of design thinking in the university of defence student´s learning process. In: Goméz Chova, L. (ed.) ICERI 2022, vol. 15, no. 1, pp. 1324–1328. IATED, Seville (2022)

    Google Scholar 

  6. Stodola, P., Drozd, J., Nohel, J., Hodický, J., Procházka, D.: Trajectory optimization in a cooperative aerial reconnaissance model. Sensors 19(12), 2823 (2019)

    Article  Google Scholar 

  7. Drozd, J., Stodola, P., Křišťálová, D., Kozůbek, J.: Experiments with the UAS reconnaissance model in the real environment. In: Mazal, J. (ed.) MESAS 2017. LNCS, vol. 10756, pp. 340–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76072-8_24

    Chapter  Google Scholar 

  8. Blaha, M., Šilinger, K., Potužák, L.: Linear and angular issues in perspective artillery fire control system. In: MATEC Web Conference, vol. 210, p. 02055. EDP Sciences (2018)

    Google Scholar 

  9. Hošková-Mayerová, Š, Talhofer, V., Otřísal, P., Rybanský, M.: Influence of weights of geographical factors on the results of multicriteria analysis in solving spatial analyses. ISPRS Int. J. Geo-Inf. 9(8), 489 (2020)

    Article  Google Scholar 

  10. Mazal, J., et al.: Modelling of the microrelief impact to the cross country movement. In: Bottani, I. (ed.) HMS 2020, pp. 66–70 (2020)

    Google Scholar 

  11. Hrdina, J., Vašík, P., Procházka, J., Kutěj, L., Ščurek, R.: The weighted core of games based on tactical decisions. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) MESAS 2019. LNCS, vol. 11995, pp. 244–252. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43890-6_19

    Chapter  Google Scholar 

  12. Drozd, J., Rak, L., Zahradníček, P., Stodola, P., Hodický, J.: Effectiveness evaluation of aerial reconnaissance in battalion force protection operation using the constructive simulation. J. Defense Model. Simul. 20(2), 181–196 (2023)

    Article  Google Scholar 

  13. Kompan, J.: Mierové a bezpečnostné aktivity OSN ako základný kameň úsilia NATO na podporu mieru. In: Spilý, P. (ed.) National and International Security 2020, vol. 11, pp. 195–202. Akadémia ozbrojených síl gen. M. R. Štefánika, Liptovský Mikuláš (2020)

    Google Scholar 

  14. UNFICYP Mandate. UNFICYP. https://unficyp.unmissions.org/unficyp-mandate. Accessed 22 May 2023

  15. Majchút, I.: Impact of significant external actors on Cyprus conflict solution. Politické vedy 21(1), 58–76 (2018)

    Article  Google Scholar 

  16. Majchút, I., Hrnčiar, M.: Cyprus-dimenzie konfliktu, 1st edn. Akadémie ozbrojených síl gen. M. R. Štefánika, Liptovský Mikuláš (2014)

    Google Scholar 

  17. UNFICYP - Peace Keeping Mission in Cyprus. Military Aviation Reachout (MAR). https://milavreachout.org/unficyp-peace-keeping-mission-in-cyprus/. Accessed 23 June 2023

  18. Kompan, J.: Využitie distribučných úloh pri plánovaní ženijnej podpory mobility v stabilizačných aktivitách. Vojenské reflexie 13(2), 7–20 (2018)

    Google Scholar 

  19. Dorn, A.W.: Electronic eyes on the green line: surveillance by the United Nations peacekeeping force in Cyprus. Intell. Natl. Secur. 29(2), 184–207 (2014)

    Article  MathSciNet  Google Scholar 

  20. Stodola, P.: Improvement in the model of cooperative aerial reconnaissance used in the tactical decision support system. J. Defense Model. Simul. 14(4), 483–492 (2017)

    Article  Google Scholar 

  21. Stodola, P., Drozd, J., Mazal, J., Hodický, J., Procházka, D.: Cooperative unmanned aerial system reconnaissance in a complex urban environment and uneven terrain. Sensors 19(17), 3754 (2019)

    Article  Google Scholar 

  22. Stodola, P., Kozůbek, J., Drozd, J.: Using unmanned aerial systems in military operations for autonomous reconnaissance. In: Mazal, J. (ed.) MESAS 2018. LNCS, vol. 11472, pp. 514–529. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14984-0_38

    Chapter  Google Scholar 

  23. Stodola, P.: Unmanned surveillance problem: mathematical formulation, solution algorithms and experiments. Mil. Oper. Res. 25(2), 31–47 (2020)

    Article  MathSciNet  Google Scholar 

  24. Stodola, P., Drozd, J., Nohel, J.: Model of surveillance in complex environment using a swarm of unmanned aerial vehicles. In: Mazal, J., Fagiolini, A., Vasik, P., Turi, M. (eds.) MESAS 2020. LNCS, vol. 12619, pp. 231–249. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70740-8_15

    Chapter  Google Scholar 

  25. Stodola, P., Mazal, J.: Model of optimal cooperative reconnaissance and its solution using metaheuristic methods. Defence Sci. J. 67(5), 529–535 (2017)

    Article  Google Scholar 

  26. RQ-11B Raven. Official United States Air Force Website. https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104533/rq-11b-raven/. Accessed 19 June 2023

  27. Raven® B RQ-11. AV AeroVironment. https://www.avinc.com/uas/raven. Accessed 19 June 2023

  28. JUMP 20. AV AeroVironment. https://www.avinc.com/uas/jump-20. Accessed 19 June 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Turaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hrnčiar, M., Turaj, M., Nohel, J., Stodola, P. (2025). UAS Flight Path Optimization Model for Effective Monitoring and Surveillance of the Buffer Zone in the UNFICYP Peacekeeping Mission. In: Mazal, J., et al. Modelling and Simulation for Autonomous Systems. MESAS 2023. Lecture Notes in Computer Science, vol 14615. Springer, Cham. https://doi.org/10.1007/978-3-031-71397-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71397-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71396-5

  • Online ISBN: 978-3-031-71397-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics