Abstract
While there already exist a number of 2D and 3D pose estimation models with high accuracy, in special domains like sports, which usually require even higher accuracy, there are still spaces to be improved. Existing pose models primarily focus on regular daily activities, which, when being applied to precision sports, such as golf swings, still face limitations. In fact, the rare poses and self-occlusions in golf swing videos can easily mislead regular pose models. To overcome these challenges, we develop a small (2D and 3D) GolfSwing dataset that includes both golfer and club poses. We then fine-tune state-of-the-art 2D and 3D posture models, including HRNet, ViTPose, DEKR, and MixSTE, by GolfSwing into a set of models called GolfPose for golfer-club pose estimation with much higher accuracy. Such a simple-yet-effective method may be generalized to other sports with self-occluded properties. Code is available at https://github.com/MingHanLee/GolfPose.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baumgartner, T., Klatt, S.: Monocular 3d human pose estimation for sports broadcasts using partial sports field registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5108–5117 (2023)
Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 7291–7299 (2017)
Captury: Captury motion systems. https://captury.com/ (2013), accessed: 2023-06-19
Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C.C., Lin, D.: MMDetection: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)
Contributors, M.: Openmmlab pose estimation toolbox and benchmark. https://github.com/open-mmlab/mmpose (2020)
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv preprint arXiv:2010.11929 (2020)
Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)
Geng, Z., Sun, K., Xiao, B., Zhang, Z., Wang, J.: Bottom-up Human Pose Estimation via Disentangled Keypoint Regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 14676–14686 (2021)
Hossain, M.R.I., Little, J.J.: Exploiting Temporal Information for 3D Human Pose Estimation. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 68–84 (2018)
Ingwersen, C.K., Mikkelstrup, C., Jensen, J.N., Hannemose, M.R., Dahl, A.B.: SportsPose: A Dynamic 3D Sports Pose Dataset. In: Proceedings of the IEEE/CVF International Workshop on Computer Vision in Sports (2023)
Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(7), 1325–1339 (2013)
Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end Recovery of Human Shape and Pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 7122–7131 (2018)
Kim, T.T., Zohdy, M.A., Barker, M.P.: Applying Pose Estimation to Predict Amateur Golf Swing Performance using Edge Processing. IEEE Access 8, 143769–143776 (2020)
Lee, K.J., Ryou, O., Kang, J.: Quantitative Golf Swing Analysis based on Kinematic Mining Approach. Korean Journal of Sport Biomechanics 31(2), 87–94 (2021)
Liao, C.C., Hwang, D.H., Koike, H.: AI Golf: Golf Swing Analysis Tool for Self-Training. IEEE Access 10, 106286–106295 (2022)
Liao, C.C., Hwang, D.H., Wu, E., Koike, H.: AI Coach: A Motor Skill Training System using Motion Discrepancy Detection. In: Proceedings of the Augmented Humans International Conference. pp. 179–189 (2023)
Lin, K., Wang, L., Liu, Z.: End-to-end Human Pose and Mesh Reconstruction with Transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1954–1963 (2021)
Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: Common Objects in Context. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 740–755. Springer International Publishing (2014)
Liu, J., Saquib, N., Chen, Z., Kazi, R.H., Wei, L.Y., Fu, H., Tai, C.L.: PoseCoach: A Customizable Analysis and Visualization System for Video-based Running Coaching. In: IEEE Transactions on Visualization and Computer Graphics. pp. 1–14 (2022)
Liu, P., Wang, J.H.: MonoTrack: Shuttle Trajectory Reconstruction From Monocular Badminton Video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). pp. 3513–3522 (2022)
Liu, R., Shen, J., Wang, H., Chen, C., Cheung, S.c., Asari, V.: Attention Mechanism Exploits Temporal Contexts: Real-time 3D Human Pose Reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 5064–5073 (2020)
Timo von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering Accurate 3D Human Pose in The Wild Using IMUs and a Moving Camera. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 601–617 (2018)
McNally, W., Vats, K., Pinto, T., Dulhanty, C., McPhee, J., Wong, A.: Golfdb: A Video Database for Golf Swing Sequencing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPR). pp. 0–0 (2019)
Mehta, D., Rhodin, H., Casas, D., Fua, P., Sotnychenko, O., Xu, W., Theobalt, C.: Monocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision. In: Proceedings of the International Conference on 3D Vision (3DV) (2017)
Mohamed, A., Chen, H., Wang, Z., Claudel, C.: Skeleton-graph: Long-term 3D Motion Prediction from 2D Observations using Deep Spatio-temporal Graph CNNs. arXiv preprint arXiv:2109.10257 (2021)
Mun, F., Suh, S.W., Park, H.J., Choi, A.: Kinematic Relationship Between Rotation of Lumbar Spine and Hip Joints during Golf Swing in Professional Golfers. Biomed. Eng. Online 14, 1–10 (2015)
Nonaka, N., Fujihira, R., Nishio, M., Murakami, H., Tajima, T., Yamada, M., Maeda, A., Seita, J.: End-to-End High-Risk Tackle Detection System for Rugby. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). pp. 3550–3559 (2022)
Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D Human Pose Estimation in Video with Temporal Convolutions and Semi-supervised Training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 7753–7762 (2019)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence (Jun 2017)
Roetenberg, D., Luinge, H., Slycke, P., et al.: Xsens MVN: Full 6DOF Human Motion Tracking using Miniature Inertial Sensors. Xsens Motion Technologies BV, Tech. Rep 1, 1–7 (2009)
Sun, K., Xiao, B., Liu, D., Wang, J.: Deep High-resolution Representation Learning for Human Pose Estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 5693–5703 (2019)
Tekin, B., Rozantsev, A., Lepetit, V., Fua, P.: Direct Prediction of 3D Body Poses from Motion Compensated Sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 991–1000 (2016)
Trumble, M., Gilbert, A., Malleson, C., Hilton, A., Collomosse, J.: Total Capture: 3D Human Pose Estimation Fusing Video and Inertial Sensors. In: Proceedings of British Machine Vision Conference. pp. 1–13 (2017)
Vicon: Motion Capture. https://www.vicon.com/ (1984), accessed: 2023-08-07
Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://github.com/facebookresearch/detectron2 (2019)
Xiao, B., Wu, H., Wei, Y.: Simple Baselines for Human Pose Estimation and Tracking. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 466–481 (2018)
Xu, Y., Zhang, J., Zhang, Q., Tao, D.: Vitpose: Simple vision transformer baselines for human pose estimation. In: Advances in Neural Information Processing Systems (2022)
Yu-Hui, C., Ard, O., Francois, B., Andrew, B., Vijay, S.: MoveNet. https://www.tensorflow.org/hub/tutorials/movenet (2021)
Zhang, J., Tu, Z., Yang, J., Chen, Y., Yuan, J.: MixSTE: Seq2seq Mixed Spatio-Temporal Encoder for 3D Human Pose Estimation in Video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 13232–13242 (2022)
Zhang, Z.: A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)
Zhao, L., Peng, X., Tian, Y., Kapadia, M., Metaxas, D.N.: Semantic Graph Convolutional Networks for 3D Human Pose Regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3425–3435 (2019)
Zheng, C., Wu, W., Chen, C., Yang, T., Zhu, S., Shen, J., Kehtarnavaz, N., Shah, M.: Deep Learning-based Human Pose Estimation: A Survey. arXiv preprint arXiv:2012.13392 (2020)
Zheng, C., Zhu, S., Mendieta, M., Yang, T., Chen, C., Ding, Z.: 3D Human Pose Estimation With Spatial and Temporal Transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 11656–11665 (2021)
Zheng, N., Barrentine, S., Fleisig, G., Andrews, J.: Swing Kinematics for Male and Female Pro Golfers. Int. J. Sports Med. 29(12), 965–970 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lee, MH., Zhang, YC., Wu, KR., Tseng, YC. (2025). GolfPose: From Regular Posture to Golf Swing Posture. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15321. Springer, Cham. https://doi.org/10.1007/978-3-031-78305-0_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-78305-0_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78304-3
Online ISBN: 978-3-031-78305-0
eBook Packages: Computer ScienceComputer Science (R0)