Abstract
Given the presence of residual vulnerabilities in software systems, it is critical to apply suitable countermeasures in order to minimize the likelihood of an attack. In this paper we propose a formal approach, based on stochastic games, to threat analysis and synthesis of defence strategies for protecting systems with vulnerabilities. Crucially, we support analysis under partial observation, where some of the attacker’s activities are unobservable or undetectable by the defender. We construct a one-sided partially observable security game and transform it into a perfect game, for which formal analysis is feasible. We prove that this transformation is sound for a sub-class of security games and a subset of objectives specified in the temporal logic rPATL. We implement our approach and evaluate it by applying it to a real-life example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anwar, A.H., Kamhoua, C.A., Leslie, N.O., Kiekintveld, C.: Honeypot allocation for cyber deception under uncertainty. IEEE Trans. Netw. Serv. Manag. 19(3), 3438–3452 (2022)
Aslanyan, Z., Nielson, F., Parker, D.: Quantitative verification and synthesis of attack-defence scenarios. In: Proc. CSF’16, pp. 105–119 (2016)
Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: UPPAAL TIGA user-manual. Aalborg University (2007)
Bistarelli, S., Dall’Aglio, M., Peretti, P.: Strategic games on defense trees. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2006. LNCS, vol. 4691, pp. 1–15. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75227-1_1
Bork, A., Junges, S., Katoen, J.-P., Quatmann, T.: Verification of indefinite-horizon POMDPs. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 288–304. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_16
Bork, A., Katoen, J.-P., Quatmann, T.: Under-approximating expected total rewards in POMDPs. In: TACAS 2022. LNCS, vol. 13244, pp. 22–40. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99527-0_2
Carr, S., Jansen, N., Bharadwaj, S., Spaan, M.T., Topcu, U.: Safe policies for factored partially observable stochastic games. Science and System XVII, In Robotics (2021)
Cassez, F., David, A., Larsen, K.G., Lime, D., Raskin, J.: Timed control with observation based and stuttering invariant strategies. In: Proc. ATVA’07, pp. 192–206 (2007)
Chatterjee, K., Chmelik, M., Tracol, M.: What is decidable about partially observable Markov decision processes with omega-regular objectives. In: Proc. CSL’13, pp. 165–180 (2013)
Chatterjee, K., Doyen, L.: Partial-observation stochastic games: How to win when belief fails. ACM Trans. Comput. Log. 15(2), 16:1–16:44 (2014)
Chatterjee, K., Doyen, L., Henzinger, T.A.: A survey of partial-observation stochastic parity games. Formal Methods Syst. Des. 43(2), 268–284 (2013)
Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic verification of competitive stochastic systems. Formal Methods Syst. Des. 43(1), 61–92 (2013)
Chowdhary, A., Sengupta, S., Alshamrani, A., Huang, D., Sabur, A.: Adaptive MTD security using Markov game modeling. In: International Conference on Computing, Networking and Communications, ICNC 2019, Honolulu, HI, USA, February 18-21, 2019, pp. 577–581 (2019)
Durkota, K., Lisý, V., Bosanský, B., Kiekintveld, C.: Optimal network security hardening using attack graph games. In: Proc. IJCAI’15, pp. 526–532 (2015)
Eisentraut, J., Křetínský, J.: Expected cost analysis of attack-defense trees. In: Parker, D., Wolf, V. (eds.) QEST 2019. LNCS, vol. 11785, pp. 203–221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30281-8_12
Gadyatskaya, O., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Poulsen, D.B.: Modelling attack-defense trees using timed automata. In: Proc. FORMATS’16, pp. 35–50 (2016)
Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic model checker storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022)
Hong, J.B., Kim, D.S., Chung, C.-J., Huang, D.: A survey on the usability and practical applications of graphical security models. Comput. Sci. Rev. 26, 1–16 (2017)
Hunt, K., Zhuang, J.: A review of attacker-defender games: Current state and paths forward. Eur. J. Oper. Res. 313(2), 401–417 (2024)
Khakpour, N., Parker, D.: Partially-observable security games for attack-defence analysis in software systems. CoRR, abs/2211.01508 (2022)
Khakpour, N., Skandylas, C., Nariman, G.S., Weyns, D.: Towards secure architecture-based adaptations. In: Proceedings of the 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS@ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pp. 114–125, 2019
Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense modeling: Don’t miss the forest for the attack trees. Comput. Sci. Rev. 13, 03 (2013)
Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0: stochastic game verification with concurrency, equilibria and time. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 475–487. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8_25
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47
Manshaei, M.H., Zhu, Q., Alpcan, T., Basar, T., Hubaux, J.: Game theory meets network security and privacy. ACM Comput. Surv. 45(3):25:1–25:39 (2013)
Norman, G., Parker, D., Zou, X.: Verification and control of partially observable probabilistic systems. Real-Time Syst. 53(3), 354–402 (2017)
Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: A logic-based network security analyzer. In: Proceedings of the 14th Conference on USENIX Security Symposium - Volume 14, SSYM’05, p. 8, Berkeley, CA, USA, 2005. USENIX Association (2005)
Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation and analysis of attack graphs. In: Proceedings 2002 IEEE Symposium on Security and Privacy, pp. 273–284. IEEE (2002)
Simaitis, A.: Automatic Verification of Competitive Stochastic Systems. PhD thesis, Department of Computer Science, University of Oxford (2014)
Skandylas, C., Khakpour, N., Cámara, J.: Security countermeasure selection for component-based software-intensive systems. In: 22nd IEEE International Conference on Software Quality, Reliability and Security, QRS 2022, Guangzhou, China, December 5-9, 2022, pp. 63–72. IEEE (2022)
Wang, L., Islam, T., Long, T., Singhal, A., Jajodia, S.: An attack graph-based probabilistic security metric. In: Data and Applications Security XXII, 22nd Annual IFIP WG 11.3 Working Conference on Data and Applications Security, London, UK, July 13-16, 2008, Proceedings, pp. 283–296 (2008)
Weiss, J.D.: A system security engineering process. In: Proceedings of the 14th National Computer Security Conference, vol. 249, pp. 572–581 (1991)
Wideł, W., Audinot, M., Fila, B., Pinchinat, S.: Beyond 2014: Formal methods for attack tree–based security modeling. ACM Comput. Surv. 52(4), 75:1–75:36 (2019)
Winterer, L., et al.: Motion planning under partial observability using game-based abstraction. In: 56th IEEE Annual Conference on Decision and Control, CDC 2017, Melbourne, Australia, December 12-15, 2017, pp. 2201–2208 (2017)
Acknowledgements
This work was funded in part by the Swedish Knowledge Foundation (No. 20160186) and the UK Engineering and Physical Sciences Research Council (EP/X037274/1).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Khakpour, N., Parker, D. (2025). Partially-Observable Security Games for Attack-Defence Analysis in Software Systems. In: Madeira, A., Knapp, A. (eds) Software Engineering and Formal Methods. SEFM 2024. Lecture Notes in Computer Science, vol 15280. Springer, Cham. https://doi.org/10.1007/978-3-031-77382-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-77382-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77381-5
Online ISBN: 978-3-031-77382-2
eBook Packages: Computer ScienceComputer Science (R0)