Abstract
Attack-defense trees ( ) are an established formalism for assessing system security. We extend with costs and success probabilities of basic events. We design a framework to analyze the probability of a successful attack/defense, its expected cost, and its probability for a given maximum cost. On the conceptual level, we show that a proper analysis requires to model the problem using sequential decision making and non-tree structures, in contrast to classical analysis. On the technical level, we provide three algorithms: (i) reduction to PRISM-games, (ii) dedicated game solution utilizing the structure of the problem, and (iii) direct analysis of for certain settings. We demonstrate the framework and compare the solutions on several examples.
This research was funded in part by the Studienstiftung des deutschen Volkes project “Formal methods for analysis of attack-defence diagrams” and the German Research Foundation (DFG) project KR 4890/2-1 “Statistical Unbounded Verification”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
Since a step in the analysis transforms the trees into DAGs, we already introduce more generally as a DAG, not necessarily a tree.
- 5.
To simplify the presentation, we do not consider infinite executions since the games we deal with in this paper are finite and acyclic. Nevertheless, the theory would seamlessly extend to games with cycles and infinite executions if the need of such gates, e.g. [18], arises.
- 6.
In general, one can consider randomizing history-dependent strategies. However, in the context of our paper, positional strategies are sufficient even for cost-bounded objectives since the costs will be implicitly encoded in the states of the games.
- 7.
In principal, a basic event can be triggered by several events and is triggered as soon as one of these events is completed successfully, which is equivalent to a disjunction over all these triggers.
- 8.
References
Arnold, F., Guck, D., Kumar, R., Stoelinga, M.: Sequential and parallel attack tree modelling. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9338, pp. 291–299. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24249-1_25
Arnold, F., Hermanns, H., Pulungan, R., Stoelinga, M.: Time-dependent analysis of attacks. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp. 285–305. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54792-8_16
Aslanyan, Z., Nielson, F.: Model checking exact cost for attack scenarios. In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 210–231. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6_10
Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46666-7_6
Aslanyan, Z., Nielson, F., Parker, D.: Quantitative verification and synthesis of attack-defence scenarios. In: Computer Security Foundations Symposium (CSF) (2016)
Bagnato, A., Kordy, B., Meland, P.H., Schweitzer, P.: Attribute decoration of attack-defense trees. In: IJSSE (2012)
Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind Series). The MIT Press, Cambridge (2008). ISBN: 026202649X, 9780262026499
Behrmann, G., et al.: UPPAAL 4.0. In: Quantitative Evaluation of Systems (QEST) (2006)
de Bijl, M.: Using data analysis to enhance attack trees. In: Proceedings Twente Student Conference (2017)
Bossuat, A., Kordy, B.: Evil Twins: handling repetitions in attack–defense trees. In: Liu, P., Mauw, S., Stølen, K. (eds.) GraMSec 2017. LNCS, vol. 10744, pp. 17–37. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74860-3_2
Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice of security measures via multi-parameter attack trees. In: Lopez, J. (ed.) CRITIS 2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006). https://doi.org/10.1007/11962977_19
Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0_7
Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_13
Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224 (1992)
Edge, K.S., et al.: The use of attack and protection trees to analyze security for an online banking system. In: Systems Science (HICSS) (2007)
Fraile, M., Ford, M., Gadyatskaya, O., Kumar, R., Stoelinga, M., Trujillo-Rasua, R.: Using attack-defense trees to analyze threats and countermeasures in an ATM: a case study. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP, vol. 267, pp. 326–334. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48393-1_24
Gadyatskaya, O., Jhawar, R., Kordy, P., Lounis, K., Mauw, S., Trujillo-Rasua, R.: Attack trees for practical security assessment: ranking of attack scenarios with ADTool 2.0. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 159–162. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-4_10. ISBN: 978-3-319-43425-4
Hermanns, H., Krämer, J., Krčál, J., Stoelinga, M.: The value of attack-defence diagrams. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 163–185. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-0_9
Jürgenson, A., Willemson, J.: Computing exact outcomes of multi-parameter attack trees. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp. 1036–1051. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88873-4_8
Kordy, B., Mauw, S., Melissen, M., Schweitzer, P.: Attack–defense trees and two-player binary zero-sum extensive form games are equivalent. In: Alpcan, T., Buttyán, L., Baras, J.S. (eds.) GameSec 2010. LNCS, vol. 6442, pp. 245–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17197-0_17
Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 80–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19751-2_6
Kordy, B., Pietre-Cambacedes, L., Schweitzer, P.: DAG-based attack and defense modeling: don’t miss the forest for the attack trees. CoRR (2013)
Kordy, B., Wideł, W.: On quantitative analysis of attack–defense trees with repeated labels. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS, vol. 10804, pp. 325–346. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89722-6_14
Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via priced timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 156–171. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22975-1_11
Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://doi.org/10.1007/11734727_17
Mediouni, B.L., Nouri, A., Bozga, M., Legay, A., Bensalem, S.: Mitigating security risks through attack strategies exploration. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 392–413. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03421-4_25
Paul, S.: Towards automating the construction & maintenance of attack trees: a feasibility study. In: Graphical Models for Security (GramSec) (2014)
Ray, I., Poolsapassit, N.: Using attack trees to identify malicious attacks from authorized insiders. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 231–246. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827_14
Salter, C., Saydjari, O.S., Schneier, B., Wallner, J.: Toward a secure system engineering methodolgy. In: New Security Paradigms (NSPW), New York, NY, USA (1998)
Schneier, B.: Attack trees. Dr. Dobb’s J. (1999)
Schneier, B.: Secrets & Lies: Digital Security in a Networked World, 1st edn. Wiley, New York (2000). ISBN: 0471253111
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Eisentraut, J., Křetínský, J. (2019). Expected Cost Analysis of Attack-Defense Trees. In: Parker, D., Wolf, V. (eds) Quantitative Evaluation of Systems. QEST 2019. Lecture Notes in Computer Science(), vol 11785. Springer, Cham. https://doi.org/10.1007/978-3-030-30281-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-30281-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30280-1
Online ISBN: 978-3-030-30281-8
eBook Packages: Computer ScienceComputer Science (R0)