[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Optimal Algorithm for Geodesic Mutual Visibility on Hexagonal Grids

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2024)

Abstract

For a set of robots (or agents) moving in a graph, two properties are highly desirable: confidentiality (i.e., a message between two agents must not pass through any intermediate agent) and efficiency (i.e., messages are delivered through shortest paths). These properties can be obtained if the Geodesic Mutual Visibility (\(\mathrm {\ensuremath {GMV}}\)) problem is solved: oblivious robots move along the edges of the graph, without collisions, to occupy some vertices that guarantee they become pairwise geodesic mutually visible. This means there is a shortest path (i.e., a “geodesic”) between each pair of robots along which no other robots reside. In this work, we optimally solve \(\mathrm {\ensuremath {GMV}}\) on finite hexagonal grids \(G_k\). This, in turn, requires first solving a graph combinatorial problem, i.e. determining the maximum number of mutually visible vertices in \(G_k\).

The work has been partially supported by the European Union - NextGenerationEU under the Italian Ministry of University and Research (MUR) National Innovation Ecosystem grant ECS00000041-VITALITY—CUP E13C22001060006, SICURA—CUP C19C200005200004 and by the Italian National Group for Scientific Computation (GNCS-INdAM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adhikary, R., Bose, K., Kundu, M.K., Sau, B.: Mutual visibility by asynchronous robots on infinite grid. In: Algorithms for Sensor Systems—ALGOSENSORS 2018. LNCS, vol. 11410, pp. 83–101. Springer (2018). https://doi.org/10.1007/978-3-030-14094-6_6

  2. Bose, K., Adhikary, R., Kundu, M.K., Sau, B.: Arbitrary pattern formation on infinite grid by asynchronous oblivious robots. Theor. Comput. Sci. 815, 213–227 (202https://doi.org/10.1016/J.TCS.2020.02.016

  3. Brešar, B., Yero, I.G.: Lower (total) mutual-visibility number in graphs. Appl. Math. Comput. 465, 128411 (2024). https://doi.org/10.1016/j.amc.2023.128411

    Article  MathSciNet  MATH  Google Scholar 

  4. Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A.: Arbitrary pattern formation on infinite regular tessellation graphs. Theor. Comput. Sci. 942, 1–20 (2023https://doi.org/10.1016/j.tcs.2022.11.021

  5. Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A.: The geodesic mutual visibility problem for oblivious robots: the case of trees. In: 24th International Conference on Distributed Computing and Networking, ICDCN 2023, pp. 150–159. ACM (2023). https://doi.org/10.1145/3571306.3571401

  6. Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A.: The geodesic mutual visibility problem: Oblivious robots on grids and trees. Pervasive Mob. Comput. 95, 101842 (2023). https://doi.org/10.1016/j.pmcj.2023.101842

    Article  MATH  Google Scholar 

  7. Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A.: Time-optimal geodesic mutual visibility of robots on grids within minimum area. In: Proceedings of the Stabilization, Safety, and Security of Distributed Systems, pp. 385–399. Springer (2023). https://doi.org/10.1007/978-3-031-44274-2_29

  8. Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A., Piselli, F.: Mutual Visibility in Hypercube-Like Graphs. In: Structural Information and Communication Complexity—SIROCCO 2024. LNCS, vol. 14662, pp. 192–207. Springer (2024). https://doi.org/10.1007/978-3-031-60603-8_11

  9. Cicerone, S., Di Stefano, G.: Mutual-visibility in distance-hereditary graphs: a linear-time algorithm. Procedia Comput. Sci. 223, 104–111 (2023). https://doi.org/10.1016/J.PROCS.2023.08.219

    Article  MathSciNet  MATH  Google Scholar 

  10. Cicerone, S., Di Stefano, G., Klavžar, S.: On the mutual visibility in cartesian products and triangle-free graphs. Appl. Math. Comput. 438, 127619 (2023). https://doi.org/10.1016/j.amc.2022.127619

  11. Cicerone, S., Di Stefano, G., Navarra, A.: A structured methodology for designing distributed algorithms for mobile entities. Inform. Sci. 574, 111–132 (2021). https://doi.org/10.1016/j.ins.2021.05.043

  12. Cicerone, S., Di Stefano, G., Klavžar, S., Yero, I.G.: Mutual-visibility problems on graphs of diameter two. Eur. J. Combinatorics 120 (2024). https://doi.org/10.1016/j.ejc.2024.103995

  13. Daymude, J.J., Hinnenthal, K., Richa, A.W., Scheideler, C.: Computing by programmable particles. In: Distributed Computing by Mobile Entities, Current Research in Moving and Computing, LNCS, vol. 11340, pp. 615–681. Springer (2019). https://doi.org/10.1007/978-3-030-11072-7_22

  14. Di Luna, G.A., Flocchini, P., Chaudhuri, S.G., Poloni, F., Santoro, N., Viglietta, G.: Mutual visibility by luminous robots without collisions. Inf. Comput. 254, 392–418 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Di Stefano, G.: Mutual visibility in graphs. Appl. Math. Comput. 419, 126850 (2022). https://doi.org/10.1016/j.amc.2021.126850

  16. Dudeney, H.E.: Amusements in Mathematics. Nelson, Edinburgh (1917)

    Google Scholar 

  17. Flocchini, P., Prencipe, G., Santoro, N.: Moving and computing models: robots. In: Distributed Computing by Mobile Entities, Current Research in Moving and Computing, LNCS, vol. 11340, pp. 3–14. Springer (2019).https://doi.org/10.1007/978-3-030-11072-7_1

  18. Ghosh, S., Goswami, P., Sharma, A., Sau, B.: Move optimal and time optimal arbitrary pattern formations by asynchronous robots on infinite grid. Int. J. Parallel Emerg. Distrib. Syst. 38(1), 35–57 (2023). https://doi.org/10.1080/17445760.2022.2124411

    Article  MATH  Google Scholar 

  19. Manuel, P., Klavžar, S.: A general position problem in graph theory. Bull. Aust. Math. Soc. 98(2), 177–187 (2018). https://doi.org/10.1017/S0004972718000473

    Article  MathSciNet  MATH  Google Scholar 

  20. Roy, D., Klavžar, S., Lakshmanan, A.: Mutual-visibility and general position in double graphs and in mycielskians. CoRR abs/2403.05120 (2024).https://doi.org/10.48550/arXiv.2403.05120

  21. Wolfram MathWorld: Hexagonal Grid Graph. https://mathworld.wolfram.com/HexagonalGridGraph.html (2023) [Online; Entries Last Updated: Sat Jul 29 2023]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serafino Cicerone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badri, S., Cicerone, S., Di Fonso, A., Di Stefano, G. (2025). An Optimal Algorithm for Geodesic Mutual Visibility on Hexagonal Grids. In: Masuzawa, T., Katayama, Y., Kakugawa, H., Nakamura, J., Kim, Y. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2024. Lecture Notes in Computer Science, vol 14931. Springer, Cham. https://doi.org/10.1007/978-3-031-74498-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74498-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74497-6

  • Online ISBN: 978-3-031-74498-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics