[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mutual Visibility in Hypercube-Like Graphs

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2024)

Abstract

Let G be a graph and \(X\subseteq V(G)\). Then, vertices x and y of G are X-visible if there exists a shortest xy-path where no internal vertices belong to X. The set X is a mutual-visibility set of G if every two vertices of X are X-visible, while X is a total mutual-visibility set if any two vertices from V(G) are X-visible. The cardinality of a largest mutual-visibility set (resp. total mutual-visibility set) is the mutual-visibility number (resp. total mutual-visibility number) \(\mu (G)\) (resp. \(\mu _t(G)\)) of G. It is known that computing \(\mu (G)\) is an NP-complete problem, as well as \(\mu _t(G)\). In this paper, we study the (total) mutual-visibility in hypercube-like networks (namely, hypercubes, cube-connected cycles, and butterflies). Concerning computing \(\mu (G)\), we provide approximation algorithms for both hypercubes and cube-connected cycles, while we give an exact formula for butterflies. Concerning computing \(\mu _t(G)\) (in the literature, already studied in hypercubes), we provide exact formulae for both cube-connected cycles and butterflies.

The work has been supported in part by the European Union - NextGenerationEU under the Italian Ministry of University and Research (MUR) National Innovation Ecosystem grant ECS00000041 - VITALITY - CUP J97G22000170005, and by the Italian National Group for Scientific Computation (GNCS-INdAM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 89.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different.

References

  1. Bose, K., Kundu, M.K., Adhikary, R., Sau, B.: Optimal gathering by asynchronous oblivious robots in hypercubes. In: Gilbert, S., Hughes, D., Krishnamachari, B. (eds.) ALGOSENSORS 2018. LNCS, vol. 11410, pp. 102–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14094-6_7

    Chapter  Google Scholar 

  2. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  3. Bujtá, C., Klavžar, S., Tian, J.: Total mutual-visibility in hamming graphs (2023). https://arxiv.org/abs/2307.05168

  4. Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A.: The geodesic mutual visibility problem for oblivious robots: the case of trees. In: 24th International Conference on Distributed Computing and Networking, ICDCN 2023, pp. 150–159. ACM (2023). https://doi.org/10.1145/3571306.3571401

  5. Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A.: The geodesic mutual visibility problem: oblivious robots on grids and trees. Pervasive Mob. Comput. 95, 101842 (2023). https://doi.org/10.1016/j.pmcj.2023.101842. https://www.sciencedirect.com/science/article/pii/S1574119223001001

  6. Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A.: Time-optimal geodesic mutual visibility of robots on grids within minimum area. In: Dolev, S., Schieber, B. (eds.) SSS 2023. LNCS, vol. 14310, pp. 385–399. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44274-2_29

    Chapter  Google Scholar 

  7. Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A., Piselli, F.: Mutual visibility in hypercube-like graphs (2023). https://arxiv.org/abs/2308.14443

  8. Cicerone, S., Di Stefano, G.: Mutual-visibility in distance-hereditary graphs: a linear-time algorithm. In: Fernandes, C.G., Rajsbaum, S. (eds.) Proceedings of the XII Latin-American Algorithms, Graphs and Optimization Symposium, LAGOS 2023, Huatulco, Mexico, 18–22 September 2023. Procedia Computer Science, vol. 223, pp. 104–111. Elsevier (2023). https://doi.org/10.1016/J.PROCS.2023.08.219

  9. Cicerone, S., Di Stefano, G., Droždek, L., Hedžet, J., Klavžar, S., Yero, I.G.: Variety of mutual-visibility problems in graphs. Theor. Comput. Sci. 974, 114096 (2023). https://doi.org/10.1016/j.tcs.2023.114096

  10. Cicerone, S., Di Stefano, G., Klavžar, S.: On the mutual visibility in cartesian products and triangle-free graphs. Appl. Math. Comput. 438, 127619 (2023). https://doi.org/10.1016/j.amc.2022.127619

  11. Cicerone, S., Di Stefano, G., Klavžar, S., Yero, I.G.: Mutual-visibility in strong products of graphs via total mutual-visibility (2022). https://arxiv.org/abs/2210.07835

  12. Cicerone, S., Di Stefano, G., Navarra, A.: Gathering robots in graphs: the central role of synchronicity. Theor. Comput. Sci. 849, 99–120 (2021). https://doi.org/10.1016/j.tcs.2020.10.011

  13. Cicerone, S., Di Stefano, G., Klavžar, S., Yero, I.G.: Mutual-visibility problems on graphs of diameter two (2024). https://arxiv.org/abs/2401.02373

  14. D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on anonymous grids and trees without multiplicity detection. Theor. Comput. Sci. 610, 158–168 (2016)

    Article  MathSciNet  Google Scholar 

  15. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering on rings under the look-compute-move model. Distrib. Comput. 27(4), 255–285 (2014)

    Article  MathSciNet  Google Scholar 

  16. D’Angelo, G., Navarra, A., Nisse, N.: A unified approach for gathering and exclusive searching on rings under weak assumptions. Distrib. Comput. 30(1), 17–48 (2017)

    Article  MathSciNet  Google Scholar 

  17. Di Luna, G.A., Flocchini, P., Chaudhuri, S.G., Poloni, F., Santoro, N., Viglietta, G.: Mutual visibility by luminous robots without collisions. Inf. Comput. 254, 392–418 (2017). https://doi.org/10.1016/j.ic.2016.09.005

    Article  MathSciNet  Google Scholar 

  18. Di Stefano, G.: Mutual visibility in graphs. Appl. Math. Comput. 419, 126850 (2022). https://doi.org/10.1016/j.amc.2021.126850

    Article  MathSciNet  Google Scholar 

  19. Di Stefano, G., Navarra, A.: Optimal gathering of oblivious robots in anonymous graphs and its application on trees and rings. Distrib. Comput. 30(2), 75–86 (2017)

    Article  MathSciNet  Google Scholar 

  20. Dudeney, H.E.: Amusements in Mathematics. Nelson, Edinburgh (1917)

    Google Scholar 

  21. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411, 3235–3246 (2010)

    Article  MathSciNet  Google Scholar 

  22. Klavzar, S., Neethu, P.K., Chandran, S.V.U.: The general position achievement game played on graphs. Discret. Appl. Math. 317, 109–116 (2022). https://doi.org/10.1016/j.dam.2022.04.019

    Article  MathSciNet  Google Scholar 

  23. Klavžar, S., Tian, J.: Graphs with total mutual-visibility number zero and total mutual-visibility in cartesian products. Discussiones Mathematicae Graph Theory (2023). https://doi.org/10.7151/dmgt.2496

    Article  Google Scholar 

  24. Kuziak, D., Rodríguez-Velázquez, J.A.: Total mutual-visibility in graphs with emphasis on lexicographic and cartesian products (2023). https://arxiv.org/abs/2306.15818

  25. Manuel, P.D., Abd-El-Barr, M.I., Rajasingh, I., Rajan, B.: An efficient representation of Benes networks and its applications. J. Discret. Algorithms 6(1), 11–19 (2008). https://doi.org/10.1016/j.jda.2006.08.003

    Article  MathSciNet  Google Scholar 

  26. Manuel, P.D., Klavzar, S.: The graph theory general position problem on some interconnection networks. Fundam. Informaticae 163(4), 339–350 (2018). https://doi.org/10.3233/FI-2018-1748

    Article  MathSciNet  Google Scholar 

  27. Navarra, A., Piselli, F.: Mutual-visibility in Fibonacci cubes. In: Barolli, L. (ed.) AINA 2024. LNDECT, vol. 199, pp. 22–33. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-57840-3_3

  28. Poudel, P., Aljohani, A., Sharma, G.: Fault-tolerant complete visibility for asynchronous robots with lights under one-axis agreement. Theor. Comput. Sci. 850, 116–134 (2021). https://doi.org/10.1016/j.tcs.2020.10.033

    Article  MathSciNet  Google Scholar 

  29. Prabha, R., Devi, S.R., Manuel, P.: General position problem of butterfly networks (2023). https://arxiv.org/abs/2302.06154

  30. Sharma, G., Vaidyanathan, R., Trahan, J.L.: Optimal randomized complete visibility on a grid for asynchronous robots with lights. Int. J. Netw. Comput. 11(1), 50–77 (2021)

    Google Scholar 

  31. Stirling, J., Holliday, F.: The Differential Method: Or, A Treatise Concerning Summation and Interpolation of Infinite Series. E. Cave (1749)

    Google Scholar 

  32. Van, D., Marilynn, W., Quentin, L., Stout, Q.: Perfect dominating sets on cube-connected cycles. Congr. Numer. 97, 51–70 (1993)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Di Fonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A., Piselli, F. (2024). Mutual Visibility in Hypercube-Like Graphs. In: Emek, Y. (eds) Structural Information and Communication Complexity. SIROCCO 2024. Lecture Notes in Computer Science, vol 14662. Springer, Cham. https://doi.org/10.1007/978-3-031-60603-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60603-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60602-1

  • Online ISBN: 978-3-031-60603-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics