[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automatic Gradient Estimation for Calibrating Crowd Models with Discrete Decision Making

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

Recently proposed gradient estimators enable gradient descent over stochastic programs with discrete jumps in the response surface, which are not covered by automatic differentiation (AD) alone. Although these estimators’ capability to guide a swift local search has been shown for certain problems, their applicability to models relevant to real-world applications remains largely unexplored. As the gradients governing the choice in candidate solutions are calculated from sampled simulation trajectories, the optimization procedure bears similarities to metaheuristics such as particle swarm optimization, which puts the focus on the different methods’ calibration progress per function evaluation. Here, we consider the calibration of force-based crowd evacuation models based on the popular Social Force model augmented by discrete decision making. After studying the ability of an AD-based estimator for branching programs to capture the simulation’s rugged response surface, calibration problems are tackled using gradient descent and two metaheuristics. As our main insights, we find 1) that the estimation’s fidelity benefits from disregarding large jumps inherent to the Social Force model, and 2) that the common problem of inferring a parameter’s posterior distribution given some data obviates the need for AD across the Social Force calculations, allowing gradient descent to excel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/DiscoGrad/DiscoGrad.

  2. 2.

    https://github.com/chgloor/pedsim.

  3. 3.

    https://github.com/remiomosowon/pyeasyga.

References

  1. Andelfinger, P.: Towards differentiable agent-based simulation. ACM Trans. Model. Comput. Simul. 32(4), 1–26 (2023)

    Article  MathSciNet  Google Scholar 

  2. Arya, G., Schauer, M., Schäfer, F., Rackauckas, C.: Automatic differentiation of programs with discrete randomness. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems, vol. 35, pp. 10435–10447. Curran Associates, Inc. (2022)

    Google Scholar 

  3. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013)

  4. Bode, N.: Parameter calibration in crowd simulation models using approximate bayesian computation. arXiv preprint arXiv:2001.10330 (2020)

  5. Chaudhuri, S., Solar-Lezama, A.: Smooth interpretation. ACM SIGPLAN Not. 45(6), 279–291 (2010)

    Article  Google Scholar 

  6. Chen, X., Zhan, F.B.: Agent-based modelling and simulation of urban evacuation: relative effectiveness of simultaneous and staged evacuation strategies. J. Oper. Res. Soc. 59(1), 25–33 (2008)

    Article  Google Scholar 

  7. Chopra, A., et al.: DeepABM: scalable and efficient agent-based simulations via geometric learning frameworks - a case study for COVID-19 spread and interventions. In: Winter Simulation Conference, pp. 1–12. IEEE (2021)

    Google Scholar 

  8. Christodoulou, S., Naumann, U.: Differentiable programming: efficient smoothing of control-flow-induced discontinuities. arXiv preprint arXiv:2305.06692 (2023)

  9. Cranmer, K., Brehmer, J., Louppe, G.: The frontier of simulation-based inference. Proc. Natl. Acad. Sci. 117(48), 30055–30062 (2020)

    Article  MathSciNet  Google Scholar 

  10. Fu, M.C.: Chapter 19: gradient estimation. In: Henderson, S.G., Nelson, B.L. (eds.) Simulation, Handbooks in Operations Research and Management Science, vol. 13, pp. 575–616. Elsevier (2006)

    Google Scholar 

  11. Gödel, M., Bode, N., Köster, G., Bungartz, H.J.: Bayesian inference methods to calibrate crowd dynamics models for safety applications. Saf. Sci. 147, 105586 (2022)

    Article  Google Scholar 

  12. Gong, W.B., Ho, Y.C.: Smoothed (conditional) perturbation analysis of discrete event dynamical systems. IEEE Trans. Autom. Control 32(10), 858–866 (1987)

    Article  MathSciNet  Google Scholar 

  13. González-Méndez, M., Olaya, C., Fasolino, I., Grimaldi, M., Obregón, N.: Agent-based modeling for urban development planning based on human needs. Conceptual basis and model formulation. Land Use Policy 101, 105110 (2021)

    Google Scholar 

  14. Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM (2008)

    Google Scholar 

  15. Hackl, J., Dubernet, T.: Epidemic spreading in urban areas using agent-based transportation models. Future Internet 11(4), 92 (2019)

    Article  Google Scholar 

  16. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  17. Ho, Y.C., Cassandras, C.: A new approach to the analysis of discrete event dynamic systems. Automatica 19(2), 149–167 (1983)

    Article  MathSciNet  Google Scholar 

  18. Kasereka, S., Kasoro, N., Kyamakya, K., Goufo, E.F.D., Chokki, A.P., Yengo, M.V.: Agent-based modelling and simulation for evacuation of people from a building in case of fire. Procedia Comput. Sci. 130, 10–17 (2018)

    Article  Google Scholar 

  19. Kreikemeyer, J.N., Andelfinger, P.: Smoothing methods for automatic differentiation across conditional branches. IEEE Access 11, 143190–143211 (2023)

    Article  Google Scholar 

  20. Kreiss, S.: Deep social force. arXiv preprint arXiv:2109.12081 (2021)

  21. Margossian, C.C.: A review of automatic differentiation and its efficient implementation. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 9(4), e1305 (2019)

    Article  Google Scholar 

  22. Miranda, L.J.: PySwarms: a research toolkit for particle swarm optimization in Python. J. Open Source Softw. 3(21), 433 (2018)

    Article  Google Scholar 

  23. Motieyan, H., Mesgari, M.S.: An agent-based modeling approach for sustainable urban planning from land use and public transit perspectives. Cities 81, 91–100 (2018)

    Article  Google Scholar 

  24. Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Found. Comput. Math. 17, 527–566 (2017)

    Article  MathSciNet  Google Scholar 

  25. Pietzsch, B., et al.: Metamodels for evaluating, calibrating and applying agent-based models: a review. J. Acad. Soc. Sci. Stud. 23(2) (2020)

    Google Scholar 

  26. Polyak, B.: Introduction to Optimization. Optimization Software, New York (1987)

    Google Scholar 

  27. Scheinberg, K.: Finite difference gradient approximation: to randomize or not? INFORMS J. Comput. 34(5), 2384–2388 (2022)

    Article  MathSciNet  Google Scholar 

  28. Seyer, R.: Differentiable Monte Carlo Samplers with piecewise deterministic markov processes. Master’s thesis, Chalmers University of Technology (2023)

    Google Scholar 

  29. Son, S., Qiao, Y.L., Sewall, J., Lin, M.C.: Differentiable hybrid traffic simulation. ACM Trans. Graph. (TOG) 41(6), 1–10 (2022)

    Article  Google Scholar 

  30. Voloshin, D., Rybokonenko, D., Karbovskii, V.: Optimization-based calibration for micro-level agent-based simulation of pedestrian behavior in public spaces. Procedia Comput. Sci. 66, 372–381 (2015)

    Article  Google Scholar 

  31. Wang, X., Mohcine, C., Chen, J., Li, R., Ma, J.: Modeling boundedly rational route choice in crowd evacuation processes. Saf. Sci. 147, 105590 (2022)

    Article  Google Scholar 

  32. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229–256 (1992)

    Article  Google Scholar 

  33. Wolinski, D., Guy, S.J., Olivier, A.H., Lin, M., Manocha, D., Pettré, J.: Parameter estimation and comparative evaluation of crowd simulations. Comput. Graph. Forum 33(2), 303–312 (2014)

    Google Scholar 

  34. Yin, W., Murray-Tuite, P., Ukkusuri, S.V., Gladwin, H.: An agent-based modeling system for travel demand simulation for hurricane evacuation. Transp. Res. Part C: Emerg. Technol. 42, 44–59 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), grant no. 497901036 (PA) and 320435134 (JK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Andelfinger .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andelfinger, P., Kreikemeyer, J.N. (2024). Automatic Gradient Estimation for Calibrating Crowd Models with Discrete Decision Making. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14836. Springer, Cham. https://doi.org/10.1007/978-3-031-63775-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63775-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63774-2

  • Online ISBN: 978-3-031-63775-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics