Abstract
In this paper, we prove new complexity bounds for methods of convex optimization based only on computation of the function value. The search directions of our schemes are normally distributed random Gaussian vectors. It appears that such methods usually need at most n times more iterations than the standard gradient methods, where n is the dimension of the space of variables. This conclusion is true for both nonsmooth and smooth problems. For the latter class, we present also an accelerated scheme with the expected rate of convergence \(O\Big ({n^2 \over k^2}\Big )\), where k is the iteration counter. For stochastic optimization, we propose a zero-order scheme and justify its expected rate of convergence \(O\Big ({n \over k^{1/2}}\Big )\). We give also some bounds for the rate of convergence of the random gradient-free methods to stationary points of nonconvex functions, for both smooth and nonsmooth cases. Our theoretical results are supported by preliminary computational experiments.
Similar content being viewed by others
Notes
Presence of this oracle is the main reason why we call our methods gradient free (not derivative free!). Indeed, directional derivative is a much simpler object as compared with the gradient. It can be easily defined for a very large class of functions. At the same time, definition of the gradient (or subgradient) is much more involved. It is well known that in nonsmooth case, collection of partial derivatives is not a subgradient of convex function. For nonsmooth nonconvex functions, the possibility of computing a single subgradient needs a serious mathematical justification [17]. On the other hand, if we have an access to a program for computing the value of our function, then the program for computing directional derivatives can be obtained by a trivial automatic forward differentiation.
The rest of the proof is very similar to the proof of Lemma 2.2.4 in [16]. We present it here just for the reader convenience.
References
A. Agarwal, O. Dekel, and L. Xiao, Optimal algorithms for online convex optimization with multi-point bandit feedback, in Proceedings of the 23rd Annual Conference on Learning, 2010, pp. 2840.
A. Agarwal, D. Foster, D. Hsu, S. Kakade, and A. Rakhlin, Stochastic convex optimization with bandit feedback,. SIAM J. on Optimization, 23 (2013), pp. 213-240.
D. Bertsimas and S. Vempala, Solving convex programs by random walks, J. of the ACM, 51 (2004), pp. 540-556.
F. Clarke, Optimization and nonsmooth analysis, Wliley, New York, 1983.
A. Conn, K. Scheinberg, and L. Vicente , Introduction to derivative-free optimization. MPS-SIAM series on optimization, SIAM, Philadelphia, 2009.
C. Dorea, Expected number of steps of a random optimization method, JOTA, 39 (1983), pp. 165-171.
J. Duchi, M.I. Jordan, M.J. Wainwright, and A. Wibisono, Finite sample convergence rate of zero-order stochastic optimization methods, in NIPS, 2012, pp. 1448-1456.
A. D. Flaxman, A.T. Kalai, and B.H. Mcmahan, Online convex optimization in the bandit setting: gradient descent without a gradient, in Proceedings of the 16th annual ACM-SIAM symposium on Discrete Algorithms, 2005, pp. 385-394 .
R. Kleinberg, A. Slivkins, and E. Upfal, Multi-armed bandits in metric spaces, in Proceedings of the 40th annual ACM symposium on Theory of Computing, 2008, pp. 681-690.
J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, Convergence properties of the Nelder-Mead Simplex Algorithm in low dimensions, SIAM J. Optimization, 9 (1998), pp. 112-147.
J. C. Lagarias, B. Poonen, and M. H. Wright, Convergence of the restricted Nelder-Mead algorithm in two dimensions, SIAM J. Optimization, 22 (2012), pp. 501-532.
J. Matyas, Random optimization. Automation and Remote Control, 26 (1965), pp. 246-253.
J. A. Nelder and R. Mead, A simplex method for function minimization, Computer Journal, 7 (1965), pp. 308–3013
A. Nemirovski, A. Juditsky, G. Lan, and A.Shapiro, Robust Stochastic Approximation approach to Stochastic Programming, SIAM J. on Optimization, 19 (2009), pp. 1574-1609.
A. Nemirovsky and D.Yudin, Problem complexity and method efficiency in optimization, John Wiley and Sons, New York, 1983.
Yu. Nesterov, Introductory Lectures on Convex Optimization, Kluwer, Boston, 2004.
Yu. Nesterov, Lexicographic differentiation of nonsmooth functions’, Mathematical Programming, 104 (2005), pp. 669-700.
Yu. Nesterov, Random gradient-free minimization of convex functions, CORE Discussion Paper # 2011/1, (2011).
Yu. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. on Optimization, 22 (2012), pp. 341-362.
B. Polyak, Introduction to Optimization. Optimization Software - Inc., Publications Division, New York, 1987.
V. Protasov, Algorithms for approximate calculation of the minimum of a convex function from its values, Mathematical Notes, 59 (1996), pp. 69-74.
M. Sarma, On the convergence of the Baba and Dorea random optimization methods, JOTA, 66 (1990), pp. 337-343.
Acknowledgments
The authors would like to thank two anonymous referees for enormously careful and helpful comments. Pavel Dvurechensky proposed a better proof of inequality (37), which we use in this paper. Research activity of the first author for this paper was partially supported by the grant “Action de recherche concertè ARC 04/09-315” from the “Direction de la recherche scientifique - Communautè française de Belgique,” and RFBR research projects 13-01-12007 ofi_m. The second author was supported by Laboratory of Structural Methods of Data Analysis in Predictive Modeling, MIPT, through RF government grant, ag.11.G34.31.0073.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Michael Overton.
Y. Nesterov: This work was done in affiliation with Higher School of Economics, Moscow.
Appendix: Proofs of Statements of Sect. 2
Appendix: Proofs of Statements of Sect. 2
Proof of Lemma 1
Denote \(\psi (p) = \ln M_p\). This function is convex in p. Let us represent \(p = (1-\alpha )\cdot 0 + \alpha \cdot 2\) (thus, \(\alpha = {p \over 2}\)). For \(p \in [0,2]\), we have \(\alpha \in [0,1]\). Therefore,
This is the upper bound (16). If \(p \ge 2\), then \(\alpha \ge 1\), and \(\alpha \psi (2)\) becomes a lower bound for \(\psi (p)\). It remains to prove the upper bound in (17).
Let us fix some \(\tau \in (0,1)\). Note that for any \(t \ge 0\) we have
Therefore,
The minimum of the right-hand side in \(\tau \in (0,1)\) is attained at \(\tau = {p \over p+n}\). Thus,
\(\square \)
Proof of Theorem 1
Indeed, for any \(x \in E\) we have \(f_{\mu }(x) - f(x) = {1 \over \kappa } \int \limits _E [ f(x+\mu u) - f(x)] \mathrm{e}^{-{1 \over 2}\Vert u \Vert ^2} \mathrm{d}u\). Therefore, if \(f \in C^{0,0}(E)\), then
Further, if f is differentiable at x, then
Therefore, if \(f \in C^{1,1}(E)\), then
Finally, if f is twice differentiable at x, then
Therefore, if \(f \in C^{2,2}(E)\), then
\(\square \)
Proof of Lemma 2
Indeed, for all x and y in E, we have
It remains to apply (16). \(\square \)
Proof of Theorem 2
Let \(\mu >0\). Since \(f_{\mu }\) is convex, for all x and \(y \in E\) we have
Taking now the limit as \(\mu \rightarrow 0\), we prove the statement for \(\mu = 0\). \(\square \)
Proof of Lemma 3
Indeed, for function \(f \in C^{1,1}(E)\), we have
Let \(f \in C^{2,2}(E)\). Denote \(a_u(\tau ) = f(x+\tau u) - f(x) - \tau \langle \nabla f(x), u \rangle - {\tau ^2 \over 2} \langle \nabla ^2 f(x) u, u \rangle \). Then, \(|a_u(\pm \mu )| \mathop {\le }\limits ^{(7)} {\mu ^3 \over 6} L_2(f) \Vert u \Vert ^3\). Since
we have
\(\square \)
Proof of Lemma 4
Indeed,
It remains to use inequality (17). \(\square \)
Rights and permissions
About this article
Cite this article
Nesterov, Y., Spokoiny, V. Random Gradient-Free Minimization of Convex Functions. Found Comput Math 17, 527–566 (2017). https://doi.org/10.1007/s10208-015-9296-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10208-015-9296-2