[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Event-Centric Metamodel for IoT-Driven Process Monitoring and Conformance Checking

  • Conference paper
  • First Online:
Business Process Management Workshops (BPM 2023)

Abstract

Process monitoring and conformance checking analyze process events describing process executions. However, such events are not always available or in a form suitable for these analysis tasks, for example for manual processes and (semi-)automated processes whose executions are not controlled by a Process-Aware Information System. To bridge this gap, we propose to leverage Internet of Things (IoT) technologies for sensing low-level events and abstracting them into high-level process events to enable process monitoring and conformance checking. We propose an event-centric metamodel for monitoring and conformance checking systems that is agnostic with respect to process characteristics such as level of automation, system support, and modeling paradigm. We demonstrate the applicability of the metamodel by instantiating it for processes represented by different modeling paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baumgraß, A., Herzberg, N., Meyer, A., Weske, M.: BPMN extension for business process monitoring. In: EMISA 2014 (2014)

    Google Scholar 

  2. Beerepoot, I., Di Ciccio, C., Reijers, H.A., Rinderle-Ma, S., Bandara, W., et al.: The biggest business process management problems to solve before we die. Comput. Ind. 146, 103837 (2023)

    Article  Google Scholar 

  3. Bertrand, Y., De Weerdt, J., Serral, E.: A bridging model for process mining and IoT. In: Munoz-Gama, J., Lu, X. (eds.) ICPM 2021. LNBIP, vol. 433, pp. 98–110. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98581-3_8

    Chapter  Google Scholar 

  4. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99414-7

    Book  Google Scholar 

  5. Compagnucci, I., Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F.: Modelling notations for IoT-aware business processes: a systematic literature review. In: Del Río Ortega, A., Leopold, H., Santoro, F.M. (eds.) BPM 2020. LNBIP, vol. 397, pp. 108–121. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66498-5_9

    Chapter  Google Scholar 

  6. de Medeiros, A.K.A., et al.: An outlook on semantic business process mining and monitoring. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2007. LNCS, vol. 4806, pp. 1244–1255. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76890-6_52

    Chapter  Google Scholar 

  7. Franceschetti, M., Seiger, R., González González, M.J., Garcia-Ceja, E., et al.: Proambition: online process conformance checking with ambiguities driven by the internet of things. In: CEUR Workshop Proceedings, vol. 3413, pp. 52–59 (2023)

    Google Scholar 

  8. Golay, D., Karlsson, M.S., Cajander, Å.: Negative emotions induced by work-related information technology use in hospital nursing. Comput. Inform. Nurs. 40(2), 113 (2022)

    Google Scholar 

  9. Herzberg, N.: Integrating events into non-automated business process environments. Doctoral thesis, Universität Potsdam (2018)

    Google Scholar 

  10. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as distributed dynamic condition response graphs. arXiv preprint arXiv:1110.4161 (2011)

  11. Janiesch, C., Koschmider, A., Mecella, M., Weber, B., Burattin, A., Di Ciccio, C., et al.: The internet of things meets business process management: a manifesto. IEEE Syst. Man Cybern. Mag. 6(4), 34–44 (2020)

    Article  Google Scholar 

  12. Kirchner, K., Herzberg, N., Rogge-Solti, A., Weske, M.: Embedding conformance checking in a process intelligence system in hospital environments. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) KR4HC/ProHealth -2012. LNCS (LNAI), vol. 7738, pp. 126–139. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36438-9_9

    Chapter  Google Scholar 

  13. Kirikkayis, Y., Gallik, F., Reichert, M.: A holistic framework for IoT-aware business processes. In: Cabanillas, C., Garmann-Johnsen, N.F., Koschmider, A. (eds.) BPM 2022. LNBIP, vol. 460, pp. 89–100. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25383-6_8

    Chapter  Google Scholar 

  14. Kirikkayis, Y., Gallik, F., Seiger, R., Reichert, M.: Integrating IoT-driven events into business processes. In: Cabanillas, C., Pérez, F. (eds.) CAiSE 2023. LNBIP, vol. 477, pp. 86–94. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34674-3_11

    Chapter  Google Scholar 

  15. Koschmider, A., Mannhardt, F., Heuser, T.: On the contextualization of event-activity mappings. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 445–457. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5_35

    Chapter  Google Scholar 

  16. Kurpjuweit, S., Winter, R.: Viewpoint-based meta model engineering. In: Proceedings of the 2nd International Workshop on Enterprise Modelling and Information Systems Architectures (EMISA 2007). LNI, vol. P-119, pp. 143–161. GI (2007)

    Google Scholar 

  17. Lenz, R., Peleg, M., Reichert, M.: Healthcare process support: achievements, challenges, current research. IJKBO 2(4) (2012)

    Google Scholar 

  18. López, H.A., Simon, V.D.: How to (re) design declarative process notations? A view from the lens of cognitive effectiveness frameworks. In: PoEM-Forum 2022 (2022)

    Google Scholar 

  19. López-Acosta, H.A., Hildebrandt, T., Debois, S., Marquard, M.: The process highlighter: from texts to declarative processes and back. In: CEUR Workshop Proceedings, pp. 66–70. CEUR Workshop Proceedings (2018)

    Google Scholar 

  20. World Health Organization: Who guidelines on drawing blood: best practices in phlebotomy (2010). https://apps.who.int/iris/handle/10665/44294

  21. Pegoraro, M.: Probabilistic and non-deterministic event data in process mining: embedding uncertainty in process analysis techniques. arXiv preprint arXiv:2205.04827 (2022)

  22. Rinderle-Ma, S., Mangler, J.: Process automation and process mining in manufacturing. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 3–14. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_1

    Chapter  Google Scholar 

  23. Safety, W.P., World Health Organization, et al.: Who guidelines on hand hygiene in health care. Technical report, World Health Organization (2009)

    Google Scholar 

  24. Seiger, R., Franceschetti, M., Weber, B.: Data-driven generation of services for IoT-based online activity detection. In: Monti, F., Rinderle-Ma, S., Ruiz Cortés, A., Zheng, Z., Mecella, M. (eds.) ICSOC 2023. LNCS, vol. 14420, pp. 186–194. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-48424-7_14

    Chapter  Google Scholar 

  25. Seiger, R., Franceschetti, M., Weber, B.: An interactive method for detection of process activity executions from IoT data. Future Internet 15(2), 77 (2023)

    Article  Google Scholar 

  26. Seiger, R., Zerbato, F., Burattin, A., García-Bañuelos, L., Weber, B.: Towards IoT-driven process event log generation for conformance checking in smart factories. In: 24th International Enterprise Distributed Object Computing (EDOCW), pp. 20–26. IEEE (2020)

    Google Scholar 

  27. Tarallo, A., Mozzillo, R., Di Gironimo, G., De Amicis, R.: A cyber-physical system for production monitoring of manual manufacturing processes. Int. J. Interact. Des. Manuf. (IJIDeM) 12, 1235–1241 (2018)

    Article  Google Scholar 

  28. Wasserkrug, S., Gal, A., Etzion, O., Turchin, Y.: Complex event processing over uncertain data. In: DEBS 2008, vol. 332, pp. 253–264. ACM (2008)

    Google Scholar 

Download references

Acknowledgments

This work has received funding from the Swiss National Science Foundation under Grant No. IZSTZ0_208497 (ProAmbitIon project). The authors thank Estefanía Serral Asensio and the workshop participants for their feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Franceschetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franceschetti, M., Seiger, R., Weber, B. (2024). An Event-Centric Metamodel for IoT-Driven Process Monitoring and Conformance Checking. In: De Weerdt, J., Pufahl, L. (eds) Business Process Management Workshops. BPM 2023. Lecture Notes in Business Information Processing, vol 492. Springer, Cham. https://doi.org/10.1007/978-3-031-50974-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50974-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50973-5

  • Online ISBN: 978-3-031-50974-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics