[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Data-Driven Generation of Services for IoT-Based Online Activity Detection

  • Conference paper
  • First Online:
Service-Oriented Computing (ICSOC 2023)

Abstract

Business process management (BPM) technologies are increasingly adopted in the Internet of Things (IoT) to analyze processes executed in the physical world. Process mining is a mature discipline for analyzing business process executions from digital traces recorded by information systems. In typical IoT environments there is no central information system available to create homogeneous execution traces. Instead, many distributed devices including sensors and actuators produce low-level IoT data related to their operations, interactions and surroundings. We leverage this data to monitor the execution of activities and to create events suitable for process mining. We propose a framework to generate activity detection services from IoT data and a software architecture to execute these services. Our proof-of-concept implementation is based on an extensible complex event processing platform enabling the online detection of activities from IoT data. We use a running example from smart manufacturing to showcase the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Backmann, M., Baumgrass, A., Herzberg, N., Meyer, A., Weske, M.: Model-driven event query generation for business process monitoring. In: Lomuscio, A.R., Nepal, S., Patrizi, F., Benatallah, B., Brandić, I. (eds.) ICSOC 2013. LNCS, vol. 8377, pp. 406–418. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06859-6_36

    Chapter  Google Scholar 

  2. Barricelli, B.R., Valtolina, S.: A visual language and interactive system for end-user development of internet of things ecosystems. J. Vis. Lang. Comput. 40, 1–19 (2017)

    Article  Google Scholar 

  3. Bauer, M., et al.: IoT reference model. Enabling things to talk: designing IoT solutions with the IoT architectural reference model, pp. 113–162 (2013)

    Google Scholar 

  4. Beerepoot, I., Di Ciccio, C., Reijers, H.A., Rinderle-Ma, S., Bandara, W., et al.: The biggest business process management problems to solve before we die. Comput. Ind. 146, 103837 (2023)

    Article  Google Scholar 

  5. Corral-Plaza, D., Medina-Bulo, I., Ortiz, G., Boubeta-Puig, J.: A stream processing architecture for heterogeneous data sources in the internet of things. Comput. Stand. Interfaces 70, 103426 (2020)

    Article  Google Scholar 

  6. Dayarathna, M., Perera, S.: Recent advancements in event processing. ACM Comput. Surv. 51(2), 1–36 (2018)

    Article  Google Scholar 

  7. Diba, K., Batoulis, K., Weidlich, M., Weske, M.: Extraction, correlation, and abstraction of event data for process mining. Wiley Interdisciplinary Rev. Data Min. Knowl. Disc. 10(3), e1346 (2020)

    Article  Google Scholar 

  8. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications, Shelter Island (2010)

    Google Scholar 

  9. Franceschetti, M., Seiger, R., Weber, B.: An event-centric metamodel for IoT-driven process monitoring and conformance checking. In: Business Process Management Workshops. Springer International Publishing (2023)

    Google Scholar 

  10. Gökalp, M.O., Koçyiğit, A., Eren, P.E.: A visual programming framework for distributed internet of things centric complex event processing. Comput. Electr. Eng. 74, 581–604 (2019)

    Article  Google Scholar 

  11. Higashino, W.A., Capretz, M.A., Bittencourt, L.F.: CEPaaS: complex event processing as a service. In: International Congress on Big Data, pp. 169–176. IEEE (2017)

    Google Scholar 

  12. Janiesch, C., et al.: The internet of things meets business process management: a manifesto. IEEE Syst. Man. Cybern. Mag. 6(4), 34–44 (2020)

    Article  Google Scholar 

  13. Janssen, D., Mannhardt, F., Koschmider, A., van Zelst, S.J.: Process model discovery from sensor event data. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 69–81. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_6

    Chapter  Google Scholar 

  14. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC), pp. 363–369. IEEE (2008)

    Google Scholar 

  15. Mousheimish, R., Taher, Y., Zeitouni, K.: autoCEP: automatic learning of predictive rules for complex event processing. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 586–593. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46295-0_38

    Chapter  Google Scholar 

  16. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24(3), 45–77 (2007)

    Article  Google Scholar 

  17. Rebmann, A., Emrich, A., Fettke, P.: Enabling the discovery of manual processes using a multi-modal activity recognition approach. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 130–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_12

    Chapter  Google Scholar 

  18. Seiger, R., Franceschetti, M., Weber, B.: An interactive method for detection of process activity executions from IoT data. Fut. Internet 15(2), 77 (2023)

    Article  Google Scholar 

  19. Seiger, R., Malburg, L., Weber, B., Bergmann, R.: Integrating process management and event processing in smart factories: a systems architecture and use cases. J. Manuf. Syst. 63, 575–592 (2022)

    Article  Google Scholar 

  20. Soffer, P., et al.: From event streams to process models and back: challenges and opportunities. Inf. Sys. 81, 181–200 (2019)

    Article  Google Scholar 

  21. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19

    Chapter  Google Scholar 

Download references

Acknowledgments

This work has received funding from the Swiss National Science Foundation under Grant No. IZSTZ0_208497 (ProAmbitIon project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronny Seiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seiger, R., Franceschetti, M., Weber, B. (2023). Data-Driven Generation of Services for IoT-Based Online Activity Detection. In: Monti, F., Rinderle-Ma, S., Ruiz Cortés, A., Zheng, Z., Mecella, M. (eds) Service-Oriented Computing. ICSOC 2023. Lecture Notes in Computer Science, vol 14420. Springer, Cham. https://doi.org/10.1007/978-3-031-48424-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48424-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48423-0

  • Online ISBN: 978-3-031-48424-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics