Abstract
Business process management (BPM) technologies are increasingly adopted in the Internet of Things (IoT) to analyze processes executed in the physical world. Process mining is a mature discipline for analyzing business process executions from digital traces recorded by information systems. In typical IoT environments there is no central information system available to create homogeneous execution traces. Instead, many distributed devices including sensors and actuators produce low-level IoT data related to their operations, interactions and surroundings. We leverage this data to monitor the execution of activities and to create events suitable for process mining. We propose a framework to generate activity detection services from IoT data and a software architecture to execute these services. Our proof-of-concept implementation is based on an extensible complex event processing platform enabling the online detection of activities from IoT data. We use a running example from smart manufacturing to showcase the framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Backmann, M., Baumgrass, A., Herzberg, N., Meyer, A., Weske, M.: Model-driven event query generation for business process monitoring. In: Lomuscio, A.R., Nepal, S., Patrizi, F., Benatallah, B., Brandić, I. (eds.) ICSOC 2013. LNCS, vol. 8377, pp. 406–418. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06859-6_36
Barricelli, B.R., Valtolina, S.: A visual language and interactive system for end-user development of internet of things ecosystems. J. Vis. Lang. Comput. 40, 1–19 (2017)
Bauer, M., et al.: IoT reference model. Enabling things to talk: designing IoT solutions with the IoT architectural reference model, pp. 113–162 (2013)
Beerepoot, I., Di Ciccio, C., Reijers, H.A., Rinderle-Ma, S., Bandara, W., et al.: The biggest business process management problems to solve before we die. Comput. Ind. 146, 103837 (2023)
Corral-Plaza, D., Medina-Bulo, I., Ortiz, G., Boubeta-Puig, J.: A stream processing architecture for heterogeneous data sources in the internet of things. Comput. Stand. Interfaces 70, 103426 (2020)
Dayarathna, M., Perera, S.: Recent advancements in event processing. ACM Comput. Surv. 51(2), 1–36 (2018)
Diba, K., Batoulis, K., Weidlich, M., Weske, M.: Extraction, correlation, and abstraction of event data for process mining. Wiley Interdisciplinary Rev. Data Min. Knowl. Disc. 10(3), e1346 (2020)
Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications, Shelter Island (2010)
Franceschetti, M., Seiger, R., Weber, B.: An event-centric metamodel for IoT-driven process monitoring and conformance checking. In: Business Process Management Workshops. Springer International Publishing (2023)
Gökalp, M.O., Koçyiğit, A., Eren, P.E.: A visual programming framework for distributed internet of things centric complex event processing. Comput. Electr. Eng. 74, 581–604 (2019)
Higashino, W.A., Capretz, M.A., Bittencourt, L.F.: CEPaaS: complex event processing as a service. In: International Congress on Big Data, pp. 169–176. IEEE (2017)
Janiesch, C., et al.: The internet of things meets business process management: a manifesto. IEEE Syst. Man. Cybern. Mag. 6(4), 34–44 (2020)
Janssen, D., Mannhardt, F., Koschmider, A., van Zelst, S.J.: Process model discovery from sensor event data. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 69–81. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_6
Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC), pp. 363–369. IEEE (2008)
Mousheimish, R., Taher, Y., Zeitouni, K.: autoCEP: automatic learning of predictive rules for complex event processing. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 586–593. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46295-0_38
Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24(3), 45–77 (2007)
Rebmann, A., Emrich, A., Fettke, P.: Enabling the discovery of manual processes using a multi-modal activity recognition approach. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 130–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_12
Seiger, R., Franceschetti, M., Weber, B.: An interactive method for detection of process activity executions from IoT data. Fut. Internet 15(2), 77 (2023)
Seiger, R., Malburg, L., Weber, B., Bergmann, R.: Integrating process management and event processing in smart factories: a systems architecture and use cases. J. Manuf. Syst. 63, 575–592 (2022)
Soffer, P., et al.: From event streams to process models and back: challenges and opportunities. Inf. Sys. 81, 181–200 (2019)
van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19
Acknowledgments
This work has received funding from the Swiss National Science Foundation under Grant No. IZSTZ0_208497 (ProAmbitIon project).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Seiger, R., Franceschetti, M., Weber, B. (2023). Data-Driven Generation of Services for IoT-Based Online Activity Detection. In: Monti, F., Rinderle-Ma, S., Ruiz Cortés, A., Zheng, Z., Mecella, M. (eds) Service-Oriented Computing. ICSOC 2023. Lecture Notes in Computer Science, vol 14420. Springer, Cham. https://doi.org/10.1007/978-3-031-48424-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-48424-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48423-0
Online ISBN: 978-3-031-48424-7
eBook Packages: Computer ScienceComputer Science (R0)