Abstract
Image outpainting aims at generating new looking-realistic content beyond the original boundaries for a given image patch. Existing image outpainting methods tend to generate images with erroneous structures and unnatural colors when extrapolating the sub-image all-side. To solve this problem, we propose a Transformer-based staged image outpainting network. Specifically, we restructure the encoder-decoder architecture by adding hierarchical cross attention to the connection in each layer. We propose a staged expanding module that splits the extrapolation into vertical and horizontal steps so that the generated images can have consistent contextual information and similar texture. A color harmonization module that adjusts both local and global color information is also presented to make color transitions more natural. Our experiments prove that the proposed method outperforms the advanced methods on multiple datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10(8), 1200–1211 (2001)
Chen, J., Fu, Z., Huang, J., Hu, X., Peng, T.: Boosting vision transformer for low-resolution borehole image stitching through algebraic multigrid. Vis. Comput. 38(9–10), 3191–3203 (2022)
Cheng, Y.C., Lin, C.H., Lee, H.Y., Ren, J., Tulyakov, S., Yang, M.H.: InOut: diverse image outpainting via GAN inversion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11431–11440 (2022)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021 (2021)
Gao, P., et al.: Generalized image outpainting with U-transformer. Neural Netw. 162, 1–10 (2023)
Ge, S., Li, C., Zhao, S., Zeng, D.: Occluded face recognition in the wild by identity-diversity inpainting. IEEE Trans. Circuits Syst. Video Technol. 30(10), 3387–3397 (2020)
Goodfellow, I., et al.: Generative adversarial nets. In: Neural Information Processing Systems (2014)
Gulati, A., et al.: Conformer: convolution-augmented transformer for speech recognition. In: Interspeech 2020, 21st Annual Conference of the International Speech Communication Association, Virtual Event, Shanghai, China, 25–29 October 2020, pp. 5036–5040. ISCA (2020)
Guo, D., et al.: Spiral generative network for image extrapolation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 701–717. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_41
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)
Kong, D., Kong, K., Kim, K., Min, S.J., Kang, S.J.: Image-adaptive hint generation via vision transformer for outpainting. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3572–3581 (2022)
Lin, X., Sun, S., Huang, W., Sheng, B., Li, P., Feng, D.D.: EAPT: efficient attention pyramid transformer for image processing. IEEE Trans. Multimedia (2021)
Liu, Y., Guo, Z., Guo, H., Xiao, H.: Zoom-GAN: learn to colorize multi-scale targets. Vis. Comput., 1–12 (2023)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sabini, M., Rusak, G.: Painting outside the box: image outpainting with GANs. arXiv preprint arXiv:1808.08483 (2018)
Shan, Q., Curless, B., Furukawa, Y., Hernandez, C., Seitz, S.M.: Photo Uncrop. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 16–31. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_2
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)
Tan, W.R., Chan, C.S., Aguirre, H.E., Tanaka, K.: Ceci n’est pas une pipe: a deep convolutional network for fine-art paintings classification. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3703–3707. IEEE (2016)
Teterwak, P., et al.: Boundless: generative adversarial networks for image extension. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10521–10530 (2019)
Van Hoorick, B.: Image outpainting and harmonization using generative adversarial networks. arXiv preprint arXiv:1912.10960 (2019)
Wang, Y., Tao, X., Shen, X., Jia, J.: Wide-context semantic image extrapolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1399–1408 (2019)
Wu, X., et al.: Deep portrait image completion and extrapolation. IEEE Trans. Image Process. 29, 2344–2355 (2020)
Yang, Z., Dong, J., Liu, P., Yang, Y., Yan, S.: Very long natural scenery image prediction by outpainting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10561–10570 (2019)
Yao, K., Gao, P., Yang, X., Sun, J., Zhang, R., Huang, K.: Outpainting by queries. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part XXIII. pp. 153–169. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20050-2_10
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4471–4480 (2019)
Yu, X., Li, H., Yang, H.: Two-stage image decomposition and color regulator for low-light image enhancement. Vis. Comput. 39(9), 4165–4175 (2023)
Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets V2: more deformable, better results. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019 (2019)
Acknowledgements
This work was supported by the Shanghai Natural Science Foundation of China under Grant No. 19ZR1419100.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 43579 KB)
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yu, B., Lv, W., Huang, D., Ding, Y. (2024). Staged Transformer Network with Color Harmonization for Image Outpainting. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14496. Springer, Cham. https://doi.org/10.1007/978-3-031-50072-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-50072-5_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50071-8
Online ISBN: 978-3-031-50072-5
eBook Packages: Computer ScienceComputer Science (R0)