[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Staged Transformer Network with Color Harmonization for Image Outpainting

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14496))

Included in the following conference series:

  • 929 Accesses

Abstract

Image outpainting aims at generating new looking-realistic content beyond the original boundaries for a given image patch. Existing image outpainting methods tend to generate images with erroneous structures and unnatural colors when extrapolating the sub-image all-side. To solve this problem, we propose a Transformer-based staged image outpainting network. Specifically, we restructure the encoder-decoder architecture by adding hierarchical cross attention to the connection in each layer. We propose a staged expanding module that splits the extrapolation into vertical and horizontal steps so that the generated images can have consistent contextual information and similar texture. A color harmonization module that adjusts both local and global color information is also presented to make color transitions more natural. Our experiments prove that the proposed method outperforms the advanced methods on multiple datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10(8), 1200–1211 (2001)

    Article  MathSciNet  Google Scholar 

  2. Chen, J., Fu, Z., Huang, J., Hu, X., Peng, T.: Boosting vision transformer for low-resolution borehole image stitching through algebraic multigrid. Vis. Comput. 38(9–10), 3191–3203 (2022)

    Article  Google Scholar 

  3. Cheng, Y.C., Lin, C.H., Lee, H.Y., Ren, J., Tulyakov, S., Yang, M.H.: InOut: diverse image outpainting via GAN inversion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11431–11440 (2022)

    Google Scholar 

  4. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021 (2021)

    Google Scholar 

  5. Gao, P., et al.: Generalized image outpainting with U-transformer. Neural Netw. 162, 1–10 (2023)

    Article  Google Scholar 

  6. Ge, S., Li, C., Zhao, S., Zeng, D.: Occluded face recognition in the wild by identity-diversity inpainting. IEEE Trans. Circuits Syst. Video Technol. 30(10), 3387–3397 (2020)

    Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Neural Information Processing Systems (2014)

    Google Scholar 

  8. Gulati, A., et al.: Conformer: convolution-augmented transformer for speech recognition. In: Interspeech 2020, 21st Annual Conference of the International Speech Communication Association, Virtual Event, Shanghai, China, 25–29 October 2020, pp. 5036–5040. ISCA (2020)

    Google Scholar 

  9. Guo, D., et al.: Spiral generative network for image extrapolation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 701–717. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_41

    Chapter  Google Scholar 

  10. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)

    Google Scholar 

  11. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  12. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  13. Kong, D., Kong, K., Kim, K., Min, S.J., Kang, S.J.: Image-adaptive hint generation via vision transformer for outpainting. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3572–3581 (2022)

    Google Scholar 

  14. Lin, X., Sun, S., Huang, W., Sheng, B., Li, P., Feng, D.D.: EAPT: efficient attention pyramid transformer for image processing. IEEE Trans. Multimedia (2021)

    Google Scholar 

  15. Liu, Y., Guo, Z., Guo, H., Xiao, H.: Zoom-GAN: learn to colorize multi-scale targets. Vis. Comput., 1–12 (2023)

    Google Scholar 

  16. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Sabini, M., Rusak, G.: Painting outside the box: image outpainting with GANs. arXiv preprint arXiv:1808.08483 (2018)

  19. Shan, Q., Curless, B., Furukawa, Y., Hernandez, C., Seitz, S.M.: Photo Uncrop. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 16–31. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_2

    Chapter  Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

    Google Scholar 

  21. Tan, W.R., Chan, C.S., Aguirre, H.E., Tanaka, K.: Ceci n’est pas une pipe: a deep convolutional network for fine-art paintings classification. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3703–3707. IEEE (2016)

    Google Scholar 

  22. Teterwak, P., et al.: Boundless: generative adversarial networks for image extension. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10521–10530 (2019)

    Google Scholar 

  23. Van Hoorick, B.: Image outpainting and harmonization using generative adversarial networks. arXiv preprint arXiv:1912.10960 (2019)

  24. Wang, Y., Tao, X., Shen, X., Jia, J.: Wide-context semantic image extrapolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1399–1408 (2019)

    Google Scholar 

  25. Wu, X., et al.: Deep portrait image completion and extrapolation. IEEE Trans. Image Process. 29, 2344–2355 (2020)

    Article  Google Scholar 

  26. Yang, Z., Dong, J., Liu, P., Yang, Y., Yan, S.: Very long natural scenery image prediction by outpainting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10561–10570 (2019)

    Google Scholar 

  27. Yao, K., Gao, P., Yang, X., Sun, J., Zhang, R., Huang, K.: Outpainting by queries. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part XXIII. pp. 153–169. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20050-2_10

  28. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4471–4480 (2019)

    Google Scholar 

  29. Yu, X., Li, H., Yang, H.: Two-stage image decomposition and color regulator for low-light image enhancement. Vis. Comput. 39(9), 4165–4175 (2023)

    Article  Google Scholar 

  30. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets V2: more deformable, better results. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Natural Science Foundation of China under Grant No. 19ZR1419100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Yu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 43579 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, B., Lv, W., Huang, D., Ding, Y. (2024). Staged Transformer Network with Color Harmonization for Image Outpainting. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14496. Springer, Cham. https://doi.org/10.1007/978-3-031-50072-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50072-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50071-8

  • Online ISBN: 978-3-031-50072-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics