Abstract
In this paper, motivated by human natural ability to perceive unseen surroundings imaginatively, we propose a novel Spiral Generative Network, SpiralNet, to perform image extrapolation in a spiral manner, which regards extrapolation as an evolution process growing from an input sub-image along a spiral curve to an expanded full image. Our SpiralNet, consisting of ImagineGAN and SliceGAN, disentangles image extrapolation problem into two independent sub-tasks as semantic structure prediction (via ImagineGAN) and contextual detail generation (via SliceGAN), making the whole task more tractable. The design of SliceGAN implicitly harnesses the correlation between generated contents and extrapolating direction, divide-and-conquer while generation-by-parts. Extensive experiments on datasets covering both objects and scenes under different cases show that our method achieves state-of-the-art performance on image extrapolation. We also conduct ablation study to validate efficacy of our design. Our code is available at https://github.com/zhenglab/spiralnet.
D. Guo and H. Liu—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: ICML, pp. 214–223 (2017)
Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM TOG 26(3), 10 (2007)
Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM TOG 28(3), 24 (2009)
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)
Cho, W., Choi, S., Park, D.K., Shin, I., Choo, J.: Image-to-image translation via group-wise deep whitening-and-coloring transformation. In: CVPR, pp. 10639–10647 (2019)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR, pp. 3213–3223 (2016)
Dekel, T., Gan, C., Krishnan, D., Liu, C., Freeman, W.T.: Sparse, smart contours to represent and edit images. In: CVPR, pp. 3511–3520 (2018)
Doersch, C., Singh, S., Gupta, A., Sivic, J., Efros, A.A.: What makes Paris look like Paris? ACM TOG 31(4), 101 (2012)
Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: CVPR, pp. 1033–1038 (1999)
Fairchild, M.D.: Color Appearance Models. Wiley, Hoboken (2013)
Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: NIPS, pp. 5767–5777 (2017)
Hanbury, A.: Constructing cylindrical coordinate colour spaces. Pattern Recogn. Lett. 29(4), 494–500 (2008)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV, pp. 1501–1510 (2017)
Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: ECCV, pp. 172–189 (2018)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125–1134 (2017)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: ECCV, pp. 694–711 (2016)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: ICLR (2018)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR, pp. 4401–4410 (2019)
Kihlstrom, J.F.: The cognitive unconscious. Science 237(4821), 1445–1452 (1987)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Kosslyn, S.M., Ganis, G., Thompson, W.L.: Neural foundations of imagery. Nat. Rev. Neurosci. 2(9), 635 (2001)
Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: ICCVW, pp. 554–561 (2013)
Lee, D., Kim, J., Moon, W.J., Ye, J.C.: CollaGAN: collaborative GAN for missing image data imputation. In: CVPR, pp. 2487–2496 (2019)
Li, C., Wand, M.: Precomputed real-time texture synthesis with Markovian generative adversarial networks. In: ECCV, pp. 702–716 (2016)
Liu, G., Reda, F.A., Shih, K.J., Wang, T.C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: ECCV, pp. 85–100 (2018)
MacEvoy, B.: Color Vision. handprint.com (2010)
Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: ICCV, pp. 2794–2802 (2017)
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: ICLR (2018)
Nazeri, K., Ng, E., Joseph, T., Qureshi, F., Ebrahimi, M.: EdgeConnect: generative image inpainting with adversarial edge learning. arXiv preprint arXiv:1901.00212 (2019)
Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: ICVGIP, pp. 722–729 (2008)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR, pp. 2337–2346 (2019)
Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM TOG 22(3), 313–318 (2003)
Pessoa, L., Thompson, E., Noë, A.: Finding out about filling-in: a guide to perceptual completion for visual science and the philosophy of perception. Behav. Brain Sci. 21(6), 723–748 (1998)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)
Sajjadi, M.S., Scholkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: ICCV, pp. 4491–4500 (2017)
Sarvaiya, J.N., Patnaik, S., Bombaywala, S.: Image registration by template matching using normalized cross-correlation. In: ICACCTT, pp. 819–822. IEEE (2009)
Shan, Q., Curless, B., Furukawa, Y., Hernandez, C., Seitz, S.M.: Photo uncrop. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 16–31. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_2
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Slossberg, R., Shamai, G., Kimmel, R.: High quality facial surface and texture synthesis via generative adversarial networks. In: ECCV, pp. 498–513 (2018)
Teterwak, P., et al.: Boundless: generative adversarial networks for image extension. In: ICCV, pp. 10521–10530 (2019)
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200–2011 dataset. Technical report CNS-TR-2011-001, California Institute of Technology (2011)
Wang, M., Lai, Y., Liang, Y., Martin, R.R., Hu, S.M.: BiggerPicture: data-driven image extrapolation using graph matching. ACM TOG 33(6), 173 (2014)
Wang, N., Li, J., Zhang, L., Du, B.: MUSICAL: multi-scale image contextual attention learning for inpainting. In: IJCAI, pp. 3748–3754 (2019)
Wang, R., Zhang, Q., Fu, C.W., Shen, X., Zheng, W.S., Jia, J.: Underexposed photo enhancement using deep illumination estimation. In: CVPR, pp. 6849–6857 (2019)
Wang, Y., Tao, X., Shen, X., Jia, J.: Wide-context semantic image extrapolation. In: CVPR, pp. 1399–1408 (2019)
Xian, W., et al.: TextureGAN: controlling deep image synthesis with texture patches. In: CVPR, pp. 8456–8465 (2018)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: CVPR, pp. 5505–5514 (2018)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: ICCV, pp. 4471–4480 (2019)
Zhang, Y., Xiao, J., Hays, J., Tan, P.: FrameBreak: dramatic image extrapolation by guided shift-maps. In: CVPR, pp. 1171–1178 (2013)
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE TPAMI 40(6), 1452–1464 (2017)
Zhu, J.Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: ECCV, pp. 597–613 (2016)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2223–2232 (2017)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grants 61771440 and 41776113.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Guo, D. et al. (2020). Spiral Generative Network for Image Extrapolation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12364. Springer, Cham. https://doi.org/10.1007/978-3-030-58529-7_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-58529-7_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58528-0
Online ISBN: 978-3-030-58529-7
eBook Packages: Computer ScienceComputer Science (R0)