[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Spiral Generative Network for Image Extrapolation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

In this paper, motivated by human natural ability to perceive unseen surroundings imaginatively, we propose a novel Spiral Generative Network, SpiralNet, to perform image extrapolation in a spiral manner, which regards extrapolation as an evolution process growing from an input sub-image along a spiral curve to an expanded full image. Our SpiralNet, consisting of ImagineGAN and SliceGAN, disentangles image extrapolation problem into two independent sub-tasks as semantic structure prediction (via ImagineGAN) and contextual detail generation (via SliceGAN), making the whole task more tractable. The design of SliceGAN implicitly harnesses the correlation between generated contents and extrapolating direction, divide-and-conquer while generation-by-parts. Extensive experiments on datasets covering both objects and scenes under different cases show that our method achieves state-of-the-art performance on image extrapolation. We also conduct ablation study to validate efficacy of our design. Our code is available at https://github.com/zhenglab/spiralnet.

D. Guo and H. Liu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: ICML, pp. 214–223 (2017)

    Google Scholar 

  2. Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM TOG 26(3), 10 (2007)

    Article  Google Scholar 

  3. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM TOG 28(3), 24 (2009)

    Article  Google Scholar 

  4. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

  5. Cho, W., Choi, S., Park, D.K., Shin, I., Choo, J.: Image-to-image translation via group-wise deep whitening-and-coloring transformation. In: CVPR, pp. 10639–10647 (2019)

    Google Scholar 

  6. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR, pp. 3213–3223 (2016)

    Google Scholar 

  7. Dekel, T., Gan, C., Krishnan, D., Liu, C., Freeman, W.T.: Sparse, smart contours to represent and edit images. In: CVPR, pp. 3511–3520 (2018)

    Google Scholar 

  8. Doersch, C., Singh, S., Gupta, A., Sivic, J., Efros, A.A.: What makes Paris look like Paris? ACM TOG 31(4), 101 (2012)

    Article  Google Scholar 

  9. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: CVPR, pp. 1033–1038 (1999)

    Google Scholar 

  10. Fairchild, M.D.: Color Appearance Models. Wiley, Hoboken (2013)

    Book  Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  12. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: NIPS, pp. 5767–5777 (2017)

    Google Scholar 

  13. Hanbury, A.: Constructing cylindrical coordinate colour spaces. Pattern Recogn. Lett. 29(4), 494–500 (2008)

    Article  Google Scholar 

  14. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)

    Google Scholar 

  15. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV, pp. 1501–1510 (2017)

    Google Scholar 

  16. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: ECCV, pp. 172–189 (2018)

    Google Scholar 

  17. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125–1134 (2017)

    Google Scholar 

  18. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: ECCV, pp. 694–711 (2016)

    Google Scholar 

  19. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: ICLR (2018)

    Google Scholar 

  20. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR, pp. 4401–4410 (2019)

    Google Scholar 

  21. Kihlstrom, J.F.: The cognitive unconscious. Science 237(4821), 1445–1452 (1987)

    Article  Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  23. Kosslyn, S.M., Ganis, G., Thompson, W.L.: Neural foundations of imagery. Nat. Rev. Neurosci. 2(9), 635 (2001)

    Article  Google Scholar 

  24. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: ICCVW, pp. 554–561 (2013)

    Google Scholar 

  25. Lee, D., Kim, J., Moon, W.J., Ye, J.C.: CollaGAN: collaborative GAN for missing image data imputation. In: CVPR, pp. 2487–2496 (2019)

    Google Scholar 

  26. Li, C., Wand, M.: Precomputed real-time texture synthesis with Markovian generative adversarial networks. In: ECCV, pp. 702–716 (2016)

    Google Scholar 

  27. Liu, G., Reda, F.A., Shih, K.J., Wang, T.C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: ECCV, pp. 85–100 (2018)

    Google Scholar 

  28. MacEvoy, B.: Color Vision. handprint.com (2010)

    Google Scholar 

  29. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: ICCV, pp. 2794–2802 (2017)

    Google Scholar 

  30. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  31. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: ICLR (2018)

    Google Scholar 

  32. Nazeri, K., Ng, E., Joseph, T., Qureshi, F., Ebrahimi, M.: EdgeConnect: generative image inpainting with adversarial edge learning. arXiv preprint arXiv:1901.00212 (2019)

  33. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: ICVGIP, pp. 722–729 (2008)

    Google Scholar 

  34. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR, pp. 2337–2346 (2019)

    Google Scholar 

  35. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM TOG 22(3), 313–318 (2003)

    Article  Google Scholar 

  36. Pessoa, L., Thompson, E., Noë, A.: Finding out about filling-in: a guide to perceptual completion for visual science and the philosophy of perception. Behav. Brain Sci. 21(6), 723–748 (1998)

    Article  Google Scholar 

  37. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)

    Google Scholar 

  38. Sajjadi, M.S., Scholkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: ICCV, pp. 4491–4500 (2017)

    Google Scholar 

  39. Sarvaiya, J.N., Patnaik, S., Bombaywala, S.: Image registration by template matching using normalized cross-correlation. In: ICACCTT, pp. 819–822. IEEE (2009)

    Google Scholar 

  40. Shan, Q., Curless, B., Furukawa, Y., Hernandez, C., Seitz, S.M.: Photo uncrop. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 16–31. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_2

    Chapter  Google Scholar 

  41. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  42. Slossberg, R., Shamai, G., Kimmel, R.: High quality facial surface and texture synthesis via generative adversarial networks. In: ECCV, pp. 498–513 (2018)

    Google Scholar 

  43. Teterwak, P., et al.: Boundless: generative adversarial networks for image extension. In: ICCV, pp. 10521–10530 (2019)

    Google Scholar 

  44. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200–2011 dataset. Technical report CNS-TR-2011-001, California Institute of Technology (2011)

    Google Scholar 

  45. Wang, M., Lai, Y., Liang, Y., Martin, R.R., Hu, S.M.: BiggerPicture: data-driven image extrapolation using graph matching. ACM TOG 33(6), 173 (2014)

    Google Scholar 

  46. Wang, N., Li, J., Zhang, L., Du, B.: MUSICAL: multi-scale image contextual attention learning for inpainting. In: IJCAI, pp. 3748–3754 (2019)

    Google Scholar 

  47. Wang, R., Zhang, Q., Fu, C.W., Shen, X., Zheng, W.S., Jia, J.: Underexposed photo enhancement using deep illumination estimation. In: CVPR, pp. 6849–6857 (2019)

    Google Scholar 

  48. Wang, Y., Tao, X., Shen, X., Jia, J.: Wide-context semantic image extrapolation. In: CVPR, pp. 1399–1408 (2019)

    Google Scholar 

  49. Xian, W., et al.: TextureGAN: controlling deep image synthesis with texture patches. In: CVPR, pp. 8456–8465 (2018)

    Google Scholar 

  50. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: CVPR, pp. 5505–5514 (2018)

    Google Scholar 

  51. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: ICCV, pp. 4471–4480 (2019)

    Google Scholar 

  52. Zhang, Y., Xiao, J., Hays, J., Tan, P.: FrameBreak: dramatic image extrapolation by guided shift-maps. In: CVPR, pp. 1171–1178 (2013)

    Google Scholar 

  53. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE TPAMI 40(6), 1452–1464 (2017)

    Article  Google Scholar 

  54. Zhu, J.Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: ECCV, pp. 597–613 (2016)

    Google Scholar 

  55. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61771440 and 41776113.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyong Zheng or Bing Zheng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 43034 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, D. et al. (2020). Spiral Generative Network for Image Extrapolation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12364. Springer, Cham. https://doi.org/10.1007/978-3-030-58529-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58529-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58528-0

  • Online ISBN: 978-3-030-58529-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics