[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On a Full Stochastic Optimization Approach for European Option Pricing

  • Conference paper
  • First Online:
Recent Advances in Computational Optimization (WCO 2022)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1158))

Included in the following conference series:

  • 49 Accesses

Abstract

In the contemporary finance the Monte Carlo and quasi-Monte Carlo methods are solid instruments to solve various problems. In the paper the problem of deriving the fair value of European style options is considered. Regarding the option pricing problems, Monte Carlo methods are extremely efficient and useful, especially in higher dimensions. In this paper we show simulation optimization methods based on both low discrepancy sequences and variance reduction methods which essentially improve the accuracy of the standard approaches for European style options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 109.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boutchaktchiev, V.: On the Use of Macroeconomic Factors to Forecast Probability of Default (2017). SSRN: https://ssrn.com/abstract=3082749 or https://doi.org/10.2139/ssrn.3082749

  2. Antonov, I., Saleev, V.: An economic method of computing \(LP_{\tau }\)-sequences. USSR Comput. Math. Phys. 19, 252–256 (1979)

    Article  Google Scholar 

  3. Black, F., Scholes, M.: The pricing of pptions and corporate liabilities. J. Pol. Econ. 81, 637–659 (1973)

    Article  Google Scholar 

  4. Boyle, P.P.: Options: a Monte Carlo approach. J. Finan. Econ. 4, 323–338 (1977)

    Article  Google Scholar 

  5. Black, F., Scholes, M.: The valuation of option contracts and a test of market efficiency. J. Finance 27, 399–417 (1972)

    Article  Google Scholar 

  6. Botev, Z., Ridder, A.: “Variance Reduction". Wiley StatsRef: Statistics Reference Online, pp. 1–6 (2017). https://doi.org/10.1002/9781118445112.stat07975

  7. Bratley, P., Fox, B.: Algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 14(1), 88–100 (1988)

    Article  MathSciNet  Google Scholar 

  8. Broadie, M., Glasserman, P.: Pricing American-style securities using simulation. J. Econ. Dyn. Control 21, 1323–1352 (1997)

    Article  MathSciNet  Google Scholar 

  9. Chance, D.M.: An Introduction to Derivatives, 3rd edn. The Dryden Press (1995)

    Google Scholar 

  10. Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: a simplified approach. J. Fin. Econ. 7, 229–263 (1979)

    Article  MathSciNet  Google Scholar 

  11. Dimov, I.: Monte Carlo Methods for Applied Scientists. World Scientific, London, Singapore, New Jersey (2008)

    Google Scholar 

  12. Duffie, D.: Dynamic Asset Pricing Theory. Princeton (1992)

    Google Scholar 

  13. Duffie, D.: Security Markets: Stochastic Models. Academic Press, Inc. (1988)

    Google Scholar 

  14. Eckhardt, R., Ulam, S.: John von Neumann and the Monte Carlo Method (1987)

    Google Scholar 

  15. Eglajs, V., Audze, P.: New approach to the design of multifactor experiments. In: Problems of Dynamics and Strengths, vol. 35, pp. 104–107 (in Russian). Zinatne Publishing House, Riga (1977)

    Google Scholar 

  16. Fox, B.: Algorithm 647: implementation and relative efficiency of quasirandom sequence generators. ACM Trans. Math. Softw. 12(4), 362–376 (1986)

    Article  Google Scholar 

  17. Glasserman, P.: Monte Carlo Methods in Financial Engineering, p. 185. Springer, New York (2004). ISBN 0-387-00451-3

    Google Scholar 

  18. Guo, H.: Review of Applying European Option Pricing Models, Proceedings of the 3rd Czech-China Scientific Conference (2017). https://doi.org/10.5772/intechopen.71106

  19. Halton, J.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

    Article  MathSciNet  Google Scholar 

  20. Halton, J., Smith, G.B.: Algorithm 247: radical-inverse quasi-random point sequence. Commun. ACM 7, 701–702 (1964)

    Article  Google Scholar 

  21. Jarosz, W.: Efficient Monte Carlo Methods for Light Transport in Scattering Media, Ph.D. dissertation, UCSD (2008)

    Google Scholar 

  22. Joe, S., Kuo, F.: Remark on algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 29(1), 49–57 (2003)

    Article  MathSciNet  Google Scholar 

  23. Merton, R.C.: The theory of rational option pricing. Bell J. Econ. 4(1), 141–183 (1973)

    Google Scholar 

  24. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods CBSM 63 (1992)

    Google Scholar 

  25. Niederreiter, H.: Existence of good lattice points in the sense of Hlawka. Monatsh. Math. 86, 203–219 (1978)

    Google Scholar 

  26. Lemieux, C.: “Control Variates". Wiley StatsRef: Statistics Reference Online, pp. 1–8 (2017). https://doi.org/10.1002/9781118445112.stat07947

  27. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    Google Scholar 

  28. Minasny, B., McBratney, B.: A conditioned Latin hypercube method for sampling in the presence of ancillary information. J. Comput. Geosci. Archiv. 32(9), 1378–1388 (2006)

    Article  Google Scholar 

  29. Minasny, B., McBratney, A.B.: Conditioned latin hypercube sampling for calibrating soil sensor data to soil properties. In: Viscarra Rossel, R.A., McBratney, A.B., Minasny, B. (eds.) Proximal Soil Sensing, pp. 111–119. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-8859-8_9

  30. Lai, Y., Spanier, J.: Applications of Monte Carlo/Quasi-Monte Carlo methods in finance: option pricing. In: Proceedings of a Conference held at the Claremont Graduate University (1998)

    Google Scholar 

  31. Sobol, I.: Numerical Methods Monte Carlo. Nauka, Moscow (1973)

    Google Scholar 

  32. Wilmott, P., Dewynne, J., Howison, S.: Option Pricing: Mathematical Models and Computation. Oxford University Press (1995)

    Google Scholar 

Download references

Acknowledgements

Slavi Georgiev is supported by the Bulgarian National Science Fund (BNSF) under Project KP-06-M62/1 “Numerical deterministic, stochastic, machine and deep learning methods with applications in computational, quantitative, algorithmic finance, biomathematics, ecology and algebra” from 2022. Venelin Todorov is supported by the BNSF under Projects KP-06-N52/5 “Efficient methods for modeling, optimization and decision making” and KP-06-N62/6 “Machine learning through physics-informed neural networks”. The work is also supported by BNSF under Bilateral Project KP-06-Russia/17 “New Highly Efficient Stochastic Simulation Methods and Applications”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venelin Todorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Todorov, V., Georgiev, S. (2024). On a Full Stochastic Optimization Approach for European Option Pricing. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. WCO 2022. Studies in Computational Intelligence, vol 1158. Springer, Cham. https://doi.org/10.1007/978-3-031-57320-0_13

Download citation

Publish with us

Policies and ethics