Abstract
In the contemporary finance the Monte Carlo and quasi-Monte Carlo methods are solid instruments to solve various problems. In the paper the problem of deriving the fair value of European style options is considered. Regarding the option pricing problems, Monte Carlo methods are extremely efficient and useful, especially in higher dimensions. In this paper we show simulation optimization methods based on both low discrepancy sequences and variance reduction methods which essentially improve the accuracy of the standard approaches for European style options.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boutchaktchiev, V.: On the Use of Macroeconomic Factors to Forecast Probability of Default (2017). SSRN: https://ssrn.com/abstract=3082749 or https://doi.org/10.2139/ssrn.3082749
Antonov, I., Saleev, V.: An economic method of computing \(LP_{\tau }\)-sequences. USSR Comput. Math. Phys. 19, 252–256 (1979)
Black, F., Scholes, M.: The pricing of pptions and corporate liabilities. J. Pol. Econ. 81, 637–659 (1973)
Boyle, P.P.: Options: a Monte Carlo approach. J. Finan. Econ. 4, 323–338 (1977)
Black, F., Scholes, M.: The valuation of option contracts and a test of market efficiency. J. Finance 27, 399–417 (1972)
Botev, Z., Ridder, A.: “Variance Reduction". Wiley StatsRef: Statistics Reference Online, pp. 1–6 (2017). https://doi.org/10.1002/9781118445112.stat07975
Bratley, P., Fox, B.: Algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 14(1), 88–100 (1988)
Broadie, M., Glasserman, P.: Pricing American-style securities using simulation. J. Econ. Dyn. Control 21, 1323–1352 (1997)
Chance, D.M.: An Introduction to Derivatives, 3rd edn. The Dryden Press (1995)
Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: a simplified approach. J. Fin. Econ. 7, 229–263 (1979)
Dimov, I.: Monte Carlo Methods for Applied Scientists. World Scientific, London, Singapore, New Jersey (2008)
Duffie, D.: Dynamic Asset Pricing Theory. Princeton (1992)
Duffie, D.: Security Markets: Stochastic Models. Academic Press, Inc. (1988)
Eckhardt, R., Ulam, S.: John von Neumann and the Monte Carlo Method (1987)
Eglajs, V., Audze, P.: New approach to the design of multifactor experiments. In: Problems of Dynamics and Strengths, vol. 35, pp. 104–107 (in Russian). Zinatne Publishing House, Riga (1977)
Fox, B.: Algorithm 647: implementation and relative efficiency of quasirandom sequence generators. ACM Trans. Math. Softw. 12(4), 362–376 (1986)
Glasserman, P.: Monte Carlo Methods in Financial Engineering, p. 185. Springer, New York (2004). ISBN 0-387-00451-3
Guo, H.: Review of Applying European Option Pricing Models, Proceedings of the 3rd Czech-China Scientific Conference (2017). https://doi.org/10.5772/intechopen.71106
Halton, J.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)
Halton, J., Smith, G.B.: Algorithm 247: radical-inverse quasi-random point sequence. Commun. ACM 7, 701–702 (1964)
Jarosz, W.: Efficient Monte Carlo Methods for Light Transport in Scattering Media, Ph.D. dissertation, UCSD (2008)
Joe, S., Kuo, F.: Remark on algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 29(1), 49–57 (2003)
Merton, R.C.: The theory of rational option pricing. Bell J. Econ. 4(1), 141–183 (1973)
Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods CBSM 63 (1992)
Niederreiter, H.: Existence of good lattice points in the sense of Hlawka. Monatsh. Math. 86, 203–219 (1978)
Lemieux, C.: “Control Variates". Wiley StatsRef: Statistics Reference Online, pp. 1–8 (2017). https://doi.org/10.1002/9781118445112.stat07947
McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)
Minasny, B., McBratney, B.: A conditioned Latin hypercube method for sampling in the presence of ancillary information. J. Comput. Geosci. Archiv. 32(9), 1378–1388 (2006)
Minasny, B., McBratney, A.B.: Conditioned latin hypercube sampling for calibrating soil sensor data to soil properties. In: Viscarra Rossel, R.A., McBratney, A.B., Minasny, B. (eds.) Proximal Soil Sensing, pp. 111–119. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-8859-8_9
Lai, Y., Spanier, J.: Applications of Monte Carlo/Quasi-Monte Carlo methods in finance: option pricing. In: Proceedings of a Conference held at the Claremont Graduate University (1998)
Sobol, I.: Numerical Methods Monte Carlo. Nauka, Moscow (1973)
Wilmott, P., Dewynne, J., Howison, S.: Option Pricing: Mathematical Models and Computation. Oxford University Press (1995)
Acknowledgements
Slavi Georgiev is supported by the Bulgarian National Science Fund (BNSF) under Project KP-06-M62/1 “Numerical deterministic, stochastic, machine and deep learning methods with applications in computational, quantitative, algorithmic finance, biomathematics, ecology and algebra” from 2022. Venelin Todorov is supported by the BNSF under Projects KP-06-N52/5 “Efficient methods for modeling, optimization and decision making” and KP-06-N62/6 “Machine learning through physics-informed neural networks”. The work is also supported by BNSF under Bilateral Project KP-06-Russia/17 “New Highly Efficient Stochastic Simulation Methods and Applications”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Todorov, V., Georgiev, S. (2024). On a Full Stochastic Optimization Approach for European Option Pricing. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. WCO 2022. Studies in Computational Intelligence, vol 1158. Springer, Cham. https://doi.org/10.1007/978-3-031-57320-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-57320-0_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57319-4
Online ISBN: 978-3-031-57320-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)