[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Approximate option pricing and hedging in the CEV model via path-wise comparison of stochastic processes

  • Research Article
  • Published:
Annals of Finance Aims and scope Submit manuscript

Abstract

This paper presents a methodology of finding explicit boundaries for some financial quantities via comparison of stochastic processes. The path-wise comparison theorem is used to establish domination of the stock price process by a process with a known distribution that is relatively simple. We demonstrate how the comparison theorem can be applied in the constant elasticity of variance model to derive closed-form expressions for option price bounds, an approximate hedging strategy and a conditional value-at-risk estimate. We also provide numerical examples and compare precision of our method with the distribution-free approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barlow, M., Perkins, E.: One dimensional stochastic differential equations involving a singular increasing process. Stochastics 12, 229–249 (1984)

    Article  Google Scholar 

  • Bergenthum, J., Ruschendorf, L.: Comparison of semimartingales and Lèvy processes. Ann Probab 35(1), 228–254 (2007)

    Article  Google Scholar 

  • Black, F., Scholes, M.S.: The pricing of options and corporate liabilities. J Polit Econ 81(3), 637–654 (1973)

    Article  Google Scholar 

  • Carmona, R., Durrleman, V.: Generalizing the Black–Scholes formula to multivariate contingent claims. J Comput Finance 9(2), 43–67 (2006)

    Article  Google Scholar 

  • Cohen, S., Elliott, R., Pearce, C.: A general comparison theorem for backward stochastic differential equations. Adv Appl Probab 42(3), 878–898 (2010)

    Article  Google Scholar 

  • Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Boca Raton: Chapman and Hall/CRC (2004)

  • Cox, J.C., Ross, S.A.: The valuation of options for alternative stochastic processes. J Financ Econ 3, 145–166 (1976)

    Article  Google Scholar 

  • Ding, X., Wu, R.: A new proof for comparison theorems for stochastic differential inequalities with respect to semimartingales. Stoch Process Appl 78(2), 155–171 (1998)

    Article  Google Scholar 

  • Galtchouk, L.I.: A comparison theorem for stochastic equations with integrals with respect to martingales and random measures. Teoriya Veroyatnostei i ee Primeneniya 27(3), 425–433 (1982). (English translation: Theory Probab Appl 27(3), 450–460, 1983)

  • Hajek, B.: Mean stochastic comparison of diffusions. Probab Theory Relat Fields 68, 315–329 (1985)

    Google Scholar 

  • Jansen, K., Haezendonck, J., Goovaerts, M.J.: Upper bounds on stop-loss premiums in case of known moments up to the fourth order. Insur Math Econ 5, 315–334 (1986)

    Article  Google Scholar 

  • Jarrow, R., Rudd, A.: Approximate option valuation for arbitrary stochastic processes. J Financ Econ 10, 347–369 (1982)

    Article  Google Scholar 

  • Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Applications of Mathematics. Berlin: Springer (1992)

  • Krasin, V.Y., Melnikov, A.V.: On comparison theorem and its applications to finance. In: Delbaen, F., et al. (eds.) Optimality and Risk: Modern Trends in Mathematical Finance, pp. 171–181. Berlin: Springer (2009)

  • Lèvy, H.: Upper and lower bounds of put and call option value: stochastic dominance approach. J Finance 40(4), 1197–1217 (1985)

    Article  Google Scholar 

  • MacBeth, J.D., Merville, L.J.: Tests of the Black–Scholes and Cox call option valuation models. J Finance 35(2), 211–219 (1980)

    Article  Google Scholar 

  • Melnikov, A.: On the theory of stochastic equations in components of semimartingales. Matematicheskii Sbornik 110(3), 414–427 (1979a). (English translation: Mathematics of the USSR. Sbornik 38(3), 381–394, 1981)

  • Melnikov, A.: Strong solutions of stochastic differential equations with non-smooth coefficients. Teoriya Veroyatnostei i ee Primeneniya 24(1), 146–149 (1979b). (English translation: Theory Probab Appl 24(1), 147–150, 1981)

  • Melnikov, A.: On solutions of stochastic equations with driving semimartingales. In: Proceedings of the Third European Young Statisticians Meeting, pp. 120–124. Leuven: Catholic University (1983)

  • Peng, S., Zhu, X.: Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations. Stoch Process Appl 116(3), 370–380 (2006)

    Article  Google Scholar 

  • Platen, R., Heath, D.: A Benchmark Approach to Quantitative Finance. Berlin: Springer (2006)

  • Randal, J.: The Constant Elasticity of Variance Option Pricing Model. Master’s thesis, Victoria University of Wellington, Australia (1998)

  • Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J Bank Finance 26(7), 1443–1471 (2002)

    Article  Google Scholar 

  • Schepper, A.D., Heijnen, B.: Distribution-free option pricing. Insur Math Econ 40(2), 179–199 (2007)

    Article  Google Scholar 

  • Schroder, M.: Computing the constant elasticity of variance option pricing formula. J Finance 44(1), 211–219 (1989)

    Article  Google Scholar 

  • Skorokhod, A.V.: Studies in the Theory of Random Processes. Kyiv, USSR: Naukova Dumka (1961). (English translation: published by Addison-Wesley, Reading, MA, USA, 1965)

  • Yamada, T.: On comparison theorem for solutions of stochastic differential equations and its applications. J Math Kyoto Univ 13, 497–512 (1973)

    Article  Google Scholar 

  • Yan, J.-A.: A comparison theorem for semimartingales and its applications. Séminaire de probabilités Strasbourg 20, 349–351 (1986)

    Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee and the editor for their valuable comments and suggestions to improve the paper. Research supported by the NSERC under Grant 5901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Melnikov.

Additional information

The research was supported by NSERC Grant #5901.

Appendix

Appendix

In order to prove Proposition 1, we shall use the fact that the conditional density of a CEV stock price may be expressed in terms of power series (see e.g. Randal 1998).

Denote by \(f_{\tau }(s)\) the conditional density of \(S_{t+\tau }\) given \( S_{t}\):

$$\begin{aligned} f_{\tau }(s~|~S_{t})=\kappa {\mathrm {e}}^{-x-z}\sum \limits _{n=0}^{\infty } \frac{x^{n+1}z^{n}}{n!(n+1)!}, \end{aligned}$$

where

$$\begin{aligned} x=\kappa S_{t}{\mathrm {e}}^{r\tau },\quad z=\kappa s,\quad \kappa =\frac{2r}{ \sigma ^{2}\left( {\mathrm {e}}^{r\tau }-1\right) }. \end{aligned}$$

Note that

$$\begin{aligned} f_{\tau }(s~|~S_{t})ds={\mathrm {e}}^{-x-z}\sum \limits _{n=0}^{\infty }\frac{ x^{n+1}z^{n}}{n!(n+1)!}dz, \end{aligned}$$

therefore

$$\begin{aligned} {\mathbb {E}}\left( S_{t+\tau }^{m}~|~S_{t}\right)= & {} \int \limits _{0}^{\infty }\left( \frac{z}{\kappa }\right) ^{m}{\mathrm {e}}^{-x-z}\sum \limits _{n=0}^{\infty } \frac{x^{n+1}z^{n}}{n!(n+1)!}dz \\= & {} \left( \frac{x}{\kappa }\right) \kappa ^{1-m}\sum \limits _{n=0}^{\infty } \frac{{\mathrm {e}}^{-x}x^{n}}{n!}\int \limits _{0}^{\infty }\frac{{\mathrm {e}} ^{-z}z^{n+m}}{(n+1)!}dz \\= & {} S_{t}{\mathrm {e}}^{r\tau }\kappa ^{1-m}\sum \limits _{n=0}^{\infty }\frac{ {\mathrm {e}}^{-x}x^{n}}{n!}\frac{(n+m)!}{(n+1)!} \\= & {} S_{t}{\mathrm {e}}^{r\tau }\kappa ^{1-m}\sum \limits _{n=0}^{\infty }g_{x}(n)p_{m-1}(n), \end{aligned}$$

where \(g_{x}(n)\) is a probability mass function of a Poisson random variable with mean x.

If we choose such \(\alpha _{0},\alpha _{1},\dots \alpha _{m-1}\) that

$$\begin{aligned} p_{m-1}(n)=\sum \limits _{i=0}^{m-1}\alpha _{i}\prod \limits _{j=1}^{i}(n-j+1) \end{aligned}$$

and notice that

$$\begin{aligned} \prod \limits _{j=1}^{i}(n-j+1)=\left\{ \begin{array}{ll} 0 &{}\quad \hbox { if }n=0,1,\dots i-1,\\ \dfrac{n!}{(n-i)!} &{}\quad \hbox { if }n=i,i+1,\dots , \end{array} \right. \end{aligned}$$

we can rewrite the expectation as

$$\begin{aligned} {\mathbb {E}}\left( S_{t+\tau }^{m}~|~S_{t}\right)= & {} S_{t}{\mathrm {e}}^{r\tau }\kappa ^{1-m}\sum \limits _{i=0}^{m-1}\sum \limits _{n=i}^{\infty }\alpha _{i}\frac{ {\mathrm {e}}^{-x}x^{n-i}}{(n-i)!}x^{i} \\= & {} S_{t}{\mathrm {e}}^{r\tau }\kappa ^{1-m}\sum \limits _{i=0}^{m-1}\alpha _{i}x^{i}\sum \limits _{n=i}^{\infty }g_{x}(n-i) \\= & {} S_{t}{\mathrm {e}}^{r\tau }\kappa ^{1-m}\sum \limits _{i=0}^{m-1}\alpha _{i}\left( \kappa S_{t}{\mathrm {e}}^{r\tau }\right) ^{i} \\= & {} \sum \limits _{i=0}^{m-1}\alpha _{i}S_{t}^{i+1}{\mathrm {e}}^{(i+1)r\tau }\kappa ^{i+1-m}, \end{aligned}$$

which concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasin, V., Smirnov, I. & Melnikov, A. Approximate option pricing and hedging in the CEV model via path-wise comparison of stochastic processes. Ann Finance 14, 195–209 (2018). https://doi.org/10.1007/s10436-017-0309-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10436-017-0309-9

Keywords

JEL Classification

Navigation