[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Composition of Stochastic Services for LTL\(_f\) Goal Specifications

  • Conference paper
  • First Online:
Foundations of Information and Knowledge Systems (FoIKS 2024)

Abstract

Service composition à la Roman model consists of realizing a virtual service by orchestrating suitably a set of already available services. In this paper, we consider a variant where available services are stochastic systems, and the target specification is goal-oriented and specified in Linear Temporal Logic on finite traces (ltl \(_f\)). In this setting, we are interested in synthesizing a controller (policy) that maximizes the probability of satisfaction with the goal, while minimizing the expected cost of the utilization of the available services. To do so, we combine techniques from ltl \(_f\) synthesis, service composition à la Roman Model, reactive synthesis, and bi-objective lexicographic optimization on Markov Decision Processes (MDPs). This framework has several interesting applications, including Smart Manufacturing and Digital Twins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford University, USA (1997). https://searchworks.stanford.edu/view/3910936

  2. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic composition of E-services that export their behavior. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 43–58. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24593-3_4

    Chapter  Google Scholar 

  3. Berardi, D., Calvanese, D., De Giacomo, G., Mecella, M.: Composition of services with nondeterministic observable behavior. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 520–526. Springer, Heidelberg (2005). https://doi.org/10.1007/11596141_43

    Chapter  Google Scholar 

  4. Brafman, R.I., De Giacomo, G., Mecella, M., Sardiña, S.: Service composition in stochastic settings. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.) AI*IA 2017. LNCS, vol. 10640, pp. 159–171. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70169-1_12

    Chapter  Google Scholar 

  5. Brafman, R.I., De Giacomo, G., Patrizi, F.: LTLf/LDLf non-Markovian rewards. In: AAAI, pp. 1771–1778. AAAI Press (2018)

    Google Scholar 

  6. Busatto-Gaston, D., Chakraborty, D., Majumdar, A., Mukherjee, S., Pérez, G.A., Raskin, J.: Bi-objective lexicographic optimization in Markov decision processes with related objectives. In: André, É., Sun, J. (eds.) ATVA 2023. LNCS, vol. 14215, pp. 203–223. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45329-8_10

    Chapter  Google Scholar 

  7. Chatterjee, K., Katoen, J.-P., Weininger, M., Winkler, T.: Stochastic games with lexicographic reachability-safety objectives. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 398–420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8_21

    Chapter  Google Scholar 

  8. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 325–336. Springer, Heidelberg (2006). https://doi.org/10.1007/11672142_26

    Chapter  Google Scholar 

  9. Chen, K., Xu, J., Reiff-Marganiec, S.: Markov-HTN planning approach to enhance flexibility of automatic web service composition. In: ICWS, pp. 9–16. IEEE Computer Society (2009)

    Google Scholar 

  10. Chen, Y., Huang, J., Lin, C., Shen, X.: Multi-objective service composition with QoS dependencies. IEEE Trans. Cloud Comput. (2019)

    Google Scholar 

  11. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)

    Article  MathSciNet  Google Scholar 

  12. De Giacomo, G., Favorito, M., Leotta, F., Mecella, M., Monti, F., Silo, L.: AIDA: a tool for resiliency in smart manufacturing. In: Cabanillas, C., Pérez, F. (eds.) CAiSE 2023. LNBIP, vol. 477, pp. 112–120. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34674-3_14

    Chapter  Google Scholar 

  13. De Giacomo, G., Favorito, M., Leotta, F., Mecella, M., Silo, L.: Digital twins composition via Markov decision processes. In: ITBPM@BPM. CEUR Workshop Proceedings, vol. 2952, pp. 44–49. CEUR-WS.org (2021)

    Google Scholar 

  14. De Giacomo, G., Favorito, M., Leotta, F., Mecella, M., Silo, L.: Modeling resilient cyber-physical processes and their composition from digital twins via Markov decision processes. In: PMAI@IJCAI. CEUR Workshop Proceedings, vol. 3310, pp. 101–104. CEUR-WS.org (2022)

    Google Scholar 

  15. De Giacomo, G., Favorito, M., Leotta, F., Mecella, M., Silo, L.: Digital twin composition in smart manufacturing via Markov decision processes. Comput. Ind. 149, 103916 (2023)

    Article  Google Scholar 

  16. De Giacomo, G., Mecella, M., Patrizi, F.: Automated service composition based on behaviors: the roman model. In: Bouguettaya, A., Sheng, Q., Daniel, F. (eds.) Web Services Foundations, pp. 189–214. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7518-7_8

    Chapter  Google Scholar 

  17. De Giacomo, G., Patrizi, F., Sardina, S.: Automatic behavior composition synthesis. Artif. Intell. 196, 106–142 (2013)

    Article  MathSciNet  Google Scholar 

  18. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: IJCAI, pp. 854–860. IJCAI/AAAI (2013)

    Google Scholar 

  19. Di Ciccio, C., Montali, M.: Declarative process specifications: reasoning, discovery, monitoring. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. Lecture Notes in Business Information Processing, vol. 448, pp. 108–152. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_4

    Chapter  Google Scholar 

  20. Dumas, M., et al.: AI-augmented business process management systems: a research manifesto. ACM Trans. Manag. Inf. Syst. 14(1), 11:1–11:19 (2023)

    Google Scholar 

  21. Gao, A., Yang, D., Tang, S., Zhang, M.: Web service composition using Markov decision processes. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS, vol. 3739, pp. 308–319. Springer, Heidelberg (2005). https://doi.org/10.1007/11563952_28

    Chapter  Google Scholar 

  22. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Model-free reinforcement learning for lexicographic omega-regular objectives. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp. 142–159. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90870-6_8

    Chapter  Google Scholar 

  23. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic model checker storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022)

    Article  Google Scholar 

  24. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  25. Marrella, A., Mecella, M., Sardiña, S.: Supporting adaptiveness of cyber-physical processes through action-based formalisms. AI Commun. 31(1), 47–74 (2018)

    Article  MathSciNet  Google Scholar 

  26. Monti, F., Silo, L., Leotta, F., Mecella, M.: On the suitability of AI for service-based adaptive supply chains in smart manufacturing. In: ICWS, pp. 704–706. IEEE (2023)

    Google Scholar 

  27. Monti, F., Silo, L., Leotta, F., Mecella, M.: Services in smart manufacturing: comparing automated reasoning techniques for composition and orchestration. In: Aiello, M., Barzen, J., Dustdar, S., Leymann, F. (eds.) SummerSOC 2023. CCIS, vol. 1847, pp. 69–83. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45728-9_5

    Chapter  Google Scholar 

  28. Moustafa, Ahmed, Zhang, Minjie: Multi-objective service composition using reinforcement learning. In: Basu, Samik, Pautasso, Cesare, Zhang, Liang, Fu, Xiang (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 298–312. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_21

    Chapter  Google Scholar 

  29. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: state of the art and research challenges. Computer 40(11), 38–45 (2007)

    Article  Google Scholar 

  30. Pesic, M., Schonenberg, H., Van der Aalst, W.M.: Declare: full support for loosely-structured processes. In: EDOC (2007)

    Google Scholar 

  31. Puterman, M.L.: Markov decision processes (1994)

    Google Scholar 

  32. Sadeghiram, S., Ma, H., Chen, G.: A user-preference driven lexicographic approach for multi-objective distributed web service composition. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI) (2020)

    Google Scholar 

  33. Skalse, J., Abate, A.: On the limitations of Markovian rewards to express multi-objective, risk-sensitive, and modal tasks. In: UAI. Proceedings of Machine Learning Research, vol. 216, pp. 1974–1984. PMLR (2023)

    Google Scholar 

  34. Skalse, J., Hammond, L., Griffin, C., Abate, A.: Lexicographic multi-objective reinforcement learning. In: IJCAI, pp. 3430–3436. ijcai.org (2022)

    Google Scholar 

  35. Wells, A.M., Lahijanian, M., Kavraki, L.E., Vardi, M.Y.: LTLf synthesis on probabilistic systems. In: GandALF. EPTCS, vol. 326 (2020)

    Google Scholar 

  36. Wray, K., Zilberstein, S., Mouaddib, A.I.: Multi-objective MDPs with conditional lexicographic reward preferences. In: AAAI (2015)

    Google Scholar 

  37. Yadav, N., Sardiña, S.: Decision theoretic behavior composition. In: AAMAS, pp. 575–582. IFAAMAS (2011)

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the EU H2020 project AIPlan4EU (No. 101016442), the ERC-ADG WhiteMech (No. 834228), the EU ICT-48 2020 project TAILOR (No. 952215), the PRIN project RIPER (No. 20203FFYLK), and the PNRR MUR project FAIR (No. PE0000013). This work has been carried out while Luciana Silo was enrolled in the Italian National Doctorate on Artificial Intelligence run by Sapienza University of Rome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Silo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Giacomo, G., Favorito, M., Silo, L. (2024). Composition of Stochastic Services for LTL\(_f\) Goal Specifications. In: Meier, A., Ortiz, M. (eds) Foundations of Information and Knowledge Systems. FoIKS 2024. Lecture Notes in Computer Science, vol 14589. Springer, Cham. https://doi.org/10.1007/978-3-031-56940-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56940-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56939-5

  • Online ISBN: 978-3-031-56940-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics