[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Service Composition in Stochastic Settings

  • Conference paper
  • First Online:
AI*IA 2017 Advances in Artificial Intelligence (AI*IA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10640))

Included in the following conference series:

Abstract

With the growth of the Internet-of-Things and online Web services, more services with more capabilities are available to us. The ability to generate new, more useful services from existing ones has been the focus of much research for over a decade. The goal is, given a specification of the behavior of the target service, to build a controller, known as an orchestrator, that uses existing services to satisfy the requirements of the target service. The model of services and requirements used in most work is that of a finite state machine. This implies that the specification can either be satisfied or not, with no middle ground. This is a major drawback, since often an exact solution cannot be obtained. In this paper we study a simple stochastic model for service composition: we annotate the target service with probabilities describing the likelihood of requesting each action in a state, and rewards for being able to execute actions. We show how to solve the resulting problem by solving a certain Markov Decision Process (MDP) derived from the service and requirement specifications. The solution to this MDP induces an orchestrator that coincides with the exact solution if a composition exists. Otherwise it provides an approximate solution that maximizes the expected sum of values of user requests that can be serviced. The model studied although simple shades light on composition in stochastic settings and indeed we discuss several possible extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A preliminary version of this paper has been presented at the ICAPS 2017 Workshop on Generalized Planning. (The workshop does not have published proceedings.).

  2. 2.

    In the original orchestrator definition \(\gamma \) is a function of the entire history instead of the system service’s current state only. It can be shown that if an orchestrator of the previous form exist then one of the current form exists [9, 11]. So we adopt this simpler notion.

  3. 3.

    It can also be viewed as quantifying the probability (\(1-\lambda \)) that the process will terminate at some state.

  4. 4.

    An alternative notion, for which similar results can be obtained is that of average reward, defined, e.g., as \(\liminf _{m\rightarrow \infty }\frac{1}{m} \sum _{i=0}^{m} R_t(\sigma _i,a_{i+1})\), which requires more mathematical sophistication to handle.

References

  1. De Giacomo, G., Mecella, M., Patrizi, F.: Automated service composition based on behaviors: the Roman model. In: Bouguettaya, A., Sheng, Q., Daniel, F. (eds.) Web Services Foundations, pp. 189–214. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7518-7_8

    Chapter  Google Scholar 

  2. Bronsted, J., Hansen, K.M., Ingstrup, M.: Service composition issues in pervasive computing. IEEE Pervasive Comput. 9(1), 62–70 (2010)

    Article  Google Scholar 

  3. Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing web services on the semantic web. Very Larg. Data Base J. 12(4), 333–351 (2003)

    Article  Google Scholar 

  4. Yang, J., Papazoglou, M.: Service components for managing the life-cycle of service compositions. Inf. Syst. 29(2), 97–125 (2004)

    Article  Google Scholar 

  5. Cardoso, J., Sheth, A.: Introduction to semantic web services and web process composition. In: Cardoso, J., Sheth, A. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 1–13. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30581-1_1

    Chapter  Google Scholar 

  6. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating DAML-S web services composition using SHOP2. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 195–210. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39718-2_13

    Chapter  Google Scholar 

  7. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of web services by planning at the knowledge level. In: IJCAI (2005)

    Google Scholar 

  8. McIlraith, S., Son, T.: Adapting golog for composition of semantic web services. In: KR (2002)

    Google Scholar 

  9. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic composition of E-services that export their behavior. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 43–58. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24593-3_4

    Chapter  Google Scholar 

  10. Hu, Y., De Giacomo, G.: A generic technique for synthesizing bounded finite-state controllers. In: ICAPS (2013)

    Google Scholar 

  11. De Giacomo, G., Patrizi, F., Sardiña, S.: Automatic behavior composition synthesis. Artif. Intell. 196, 106–142 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hull, R.: Artifact-centric business process models: brief survey of research results and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp. 1152–1163. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88873-4_17

    Chapter  Google Scholar 

  13. Su, J.: Semantic web services: composition and analysis. IEEE Data Eng. Bull. 31(3) (2008)

    Google Scholar 

  14. Yadav, N., Sardiña, S.: Decision theoretic behavior composition. In: AAMAS (2011)

    Google Scholar 

  15. Menasce, D.: QoS issues in web services. IEEE Internet Comput. 6(6), 72–75 (2002)

    Article  Google Scholar 

  16. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004)

    Article  Google Scholar 

  17. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: IJCAI (2013)

    Google Scholar 

  18. Nain, S., Lustig, Y., Vardi, M.Y.: Synthesis from probabilistic components. Log. Methods Comput. Sci. 10(2) (2014)

    Google Scholar 

  19. Muscholl, A., Walukiewicz, I.: A lower bound on web services composition. Log. Methods Comput. Sci. 4(2) (2008)

    Google Scholar 

  20. Yadav, N., Felli, P., De Giacomo, G., Sardiña, S.: Supremal realizability of behaviors with uncontrollable exogenous events. In: IJCAI, pp. 1176–1182 (2013)

    Google Scholar 

  21. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and monitoring web service composition. In: Bussler, C., Fensel, D. (eds.) AIMSA 2004. LNCS, vol. 3192, pp. 106–115. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30106-6_11

    Chapter  Google Scholar 

  22. Bacchus, F., Boutilier, C., Grove, A.J.: Rewarding behaviors. In: AAAI (1996)

    Google Scholar 

  23. Thiébaux, S., Gretton, C., Slaney, J.K., Price, D., Kabanza, F.: Decision-theoretic planning with non-Markovian rewards. J. Artif. Intell. Res. 25, 17–74 (2006)

    MATH  MathSciNet  Google Scholar 

  24. Lacerda, B., Parker, D., Hawes, N.: Optimal policy generation for partially satisfiable co-safe LTL specifications. In: IJCAI (2015)

    Google Scholar 

  25. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In: IJCAI (2015)

    Google Scholar 

  26. De Giacomo, G., Vardi, M.Y.: LTL\({}_{\text{f}}\) and LDL\({}_{\text{ f }}\) synthesis under partial observability. In: IJCAI (2016)

    Google Scholar 

  27. Torres, J., Baier, J.A.: Polynomial-time reformulations of LTL temporally extended goals into final-state goals. In: IJCAI (2015)

    Google Scholar 

  28. Camacho, A., Triantafillou, E., Muise, C., Baier, J.A., McIlraith, S.: Non-deterministic planning with temporally extended goals: LTL over finite and infinite traces. In: AAAI (2017)

    Google Scholar 

  29. Fritz, C., McIlraith, S.A.: Monitoring plan optimality during execution. In: ICAPS (2007)

    Google Scholar 

  30. Baier, J.A., Fritz, C., Bienvenu, M., McIlraith, S.A.: Beyond classical planning: procedural control knowledge and preferences in state-of-the-art planners. In: AAAI (2008)

    Google Scholar 

  31. Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.: GOLOG: a logic programming language for dynamic domains. J. Log. Program. 31, 59–83 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. De Giacomo, G., Di Ciccio, C., Felli, P., Hu, Y., Mecella, M.: Goal-based composition of stateful services for smart homes. In: OTM (2012)

    Google Scholar 

  33. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18, 194–211 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  34. De Giacomo, G., Gerevini, A.E., Patrizi, F., Saetti, A., Sardiña, S.: Agent planning programs. Artif. Intell. 231, 64–106 (2016)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe De Giacomo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brafman, R.I., De Giacomo, G., Mecella, M., Sardina, S. (2017). Service Composition in Stochastic Settings. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds) AI*IA 2017 Advances in Artificial Intelligence. AI*IA 2017. Lecture Notes in Computer Science(), vol 10640. Springer, Cham. https://doi.org/10.1007/978-3-319-70169-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70169-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70168-4

  • Online ISBN: 978-3-319-70169-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics