Abstract
In this chapter we survey methods for inferring two types of characteristics for personalized systems: eudaimonia and hedonia (E and H). The rationale for focusing on these two characteristics is the potential to make good recommendations and the even bigger potential for creating good explanations. We first conceptualize the concepts of E and H for the purposes of personalized systems by disentangling the user preferences from the item characteristics. We proceed on surveying methods for inferring EH user characteristics from digital user traces. We follow with an overview of methods for inferring EH item characteristics from item content. Finally we provide an outlook into the future work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Koren Y, Rendle S, Bell R (2022) Advances in collaborative filtering. In: Ricci F, Rokach L, Shapira B (eds), Recommender systems handbook. Springer, New York, NY, pp 91–142. https://doi.org/10.1007/978-1-0716-2197-4_3. Accessed 08 Dec 2023
Zhang S, Tay Y, Yao L, Sun A, Zhang C (2022) Deep learning for recommender systems. In: Ricci F, Rokach L, Shapira B (eds), Recommender systems handbook. Springer, New York, NY, pp 173–210. https://doi.org/10.1007/978-1-0716-2197-4_5 Accessed 29 Sep 2023
Tkalcic M, Kosir A, Dobravec S, Tasic J (2011) Emotional properties of latent factors in an image recommender system. Elektrotehniski vestnik 78(4):177–180
Burke R (2002) Hybrid recommender systems: survey and experiments. User Model User-Adap Interact 12(4):331–370 (2002). https://doi.org/10.1023/A:1021240730564. Accessed 14 Nov 2023
Tkalčič M, Chen L (2022) Personality and recommender systems. In: Ricci F, Rokach L, Shapira B (eds), Recommender systems handbook. Springer, New York, NY, pp 757–787. https://link.springer.com/10.1007/978-1-0716-2197-4_20. Accessed 04 Oct 2022
Lex E, Kowald D, Seitlinger P, Tran TNT, Felfernig A, Schedl M (2021) Psychology-informed recommender systems. Foundations and trends ® in information retrieval, vol 15(2). Publisher: Now Publishers, Inc, pp 134–242. https://doi.org/10.1561/1500000090. Accessed 08 Dec 2023
Cantador I, Fernández-Tobías I, Bellogín A, Kosinski M, Stillwell D, Relating personality types with user preferences in multiple entertainment domains, vol 16
Icellioglu S, Ozden MS (2012) Personality effect on decision-making among normal University students and comparing gambling task performances of normal University students with a group of normal adults. Procedia—Soc Behav Sci 46:1010–1014. https://doi.org/10.1016/j.sbspro.2012.05.240. Accessed 04 Oct 2022
Chamorro-Premuzic T, Furnham A (2007) Personality and music: can traits explain how people use music in everyday life? British J Psychol 98(2):175–185. https://doi.org/10.1348/000712606X111177. Accessed 01 Jan 2023
Karumur RP, Konstan JA (2016) Relating newcomer personality to survival and activity in recommender systems. In: Proceedings of the 2016 conference on user modeling adaptation and personalization. ACM, Halifax Nova Scotia Canada, pp 195–205. https://dl.acm.org/doi/10.1145/2930238.2930246. Accessed 04 Oct 2022
Chen L, Wu W, He L (2013) How personality influences users’ needs for recommendation diversity? In: CHI’13 extended abstracts on human factors in computing systems on—CHI EA ’13. ACM Press, Paris, France, p 829. http://dl.acm.org/citation.cfm?doid=2468356.2468505. Accessed 12 Oct. 2022
Mekler ED, Hornbæk K (2016) Momentary pleasure or lasting meaning?: distinguishing eudaimonic and hedonic user experiences. In: Proceedings of the 2016 CHI conference on human factors in computing systems. ACM, San Jose, CA, USA, pp 4509–4520. https://doi.org/10.1145/2858036.2858225. Accessed 04 Oct 2022
Oliver MB, Raney AA (2011) Entertainment as pleasurable and meaningful: identifying hedonic and eudaimonic motivations for entertainment consumption. J Commun 61(5):984–1004. https://doi.org/10.1111/j.1460-2466.2011.01585.x. Accessed 17 Nov 2022
Ryan RM, Deci EL (2001) On happiness and human potentials: a review of research on hedonic and eudaimonic well-being. Ann Rev Psychol 52(1):141–166. https://doi.org/10.1146/annurev.psych.52.1.141. Accessed 27 Jan 2023
Botella C, Riva G, Gaggioli A, Wiederhold BK, Alcaniz M, Baños RM (2012) The present and future of positive technologies. Cyberpsychol Behav Soc Netw 15(2):78–84. https://doi.org/10.1089/cyber.2011.0140. Accessed 04 Oct 2022
Bujacz A, Vittersà J, Huta V, Kaczmarek LD (2014) Measuring hedonia and eudaimonia as motives for activities: cross-national investigation through traditional and Bayesian structural equation modeling. Front Psychol 5. https://doi.org/10.3389/fpsyg.2014.00984. Accessed 23 Nov 2022
Gong Y, Xu W (2007) Machine learning for multimedia content analysis, vol 30. Springer, ???
Atrey PK, Hossain MA, El Saddik A, Kankanhalli MS (2010) Multimodal Fus Multimed Anal: A Surv 16(6):345–379. https://doi.org/10.1007/s00530-010-0182-0
Beheshti A, Ghodratnama S, Elahi M, Farhood H (2022) Social data analytics. CRC Press, ???
Hu W, Xie N, Li L, Zeng X, Maybank S (2011) A survey on visual content-based video indexing and retrieval. IEEE Trans Syst Man Cybern Part C: Appl Rev 41(6):797–819. https://doi.org/10.1109/TSMCC.2011.2109710
Brezeale D, Cook DJ (2008) Automatic video classification: a survey of the literature. IEEE Trans Syst Man Cybern Part C: Appl Rev 38(3):416–430. https://doi.org/10.1109/TSMCC.2008.919173
Wang Y, Xing C, Zhou L (2006) Video semantic models: survey and evaluation. Int J Comput Sci Netw Secur (IJCSNS) 6(2):10–20
Kosinski M, Stillwell D, Graepel T (2013) Private traits and attributes are predictable from digital records of human behavior. Proc Nat Acad Sci 110(15):5802–5805 (2013). https://doi.org/10.1073/pnas.1218772110. Accessed 30 Dec 2022
Quercia D, Kosinski M, Stillwell D, Crowcroft J (2011) Our twitter profiles, our selves: predicting personality with twitter. In: 2011 IEEE third int’l conference on privacy, security, risk and trust and 2011 IEEE third int’l conference on social computing. IEEE, Boston, MA, USA, pp 180–185. https://doi.org/10.1109/PASSAT/SocialCom.2011.26. http://ieeexplore.ieee.org/document/6113111/. Accessed 30 Dec 2022
Golbeck J, Robles C, Turner K (2011) Predicting personality with social media. In: Proceedings of the 2011 annual conference extended abstracts on human factors in computing systems—CHI EA ’11. ACM Press, Vancouver, BC, Canada, p 253. https://doi.org/10.1145/1979742.1979614.http://portal.acm.org/citation.cfm?doid=1979742.1979614. Accessed 04 Oct 2022
Skowron M, Tkalčič M, Ferwerda B, Schedl M (2016) Fusing social media cues: personality prediction from twitter and instagram. In: Proceedings of the 25th international conference companion on world wide web—WWW ’16 companion. ACM Press, Montréal, Québec, Canada, pp 107–108. https://doi.org/10.1145/2872518.2889368http://dl.acm.org/citation.cfm?doid=2872518.2889368. Accessed 04 Oct 2022
Ferwerda B, Tkalčič M (2018) Predicting users’ personality from instagram pictures: using visual and/or content features? In: Proceedings of the 26th conference on user modeling, adaptation and personalization. ACM, Singapore, pp 157–161 (2018). https://doi.org/10.1145/3209219.3209248. https://dl.acm.org/doi/10.1145/3209219.3209248. Accessed 04 Oct 2022
Wang Y, Kosinski M, Deep neural networks are more accurate than humans at detecting sexual orientation from facial images, 12
Tkalčič M, Motamedi E, Barile F, Puc E, Mars Bitenc U (2022) Prediction of hedonic and eudaimonic characteristics from user interactions. In: Adjunct proceedings of the 30th ACM conference on user modeling, adaptation and personalization. ACM, Barcelona, Spain, pp 366–370. https://doi.org/10.1145/3511047.3537656. https://dl.acm.org/doi/10.1145/3511047.3537656. Accessed 04 Oct 2022
Müllensiefen D, Gingras B, Musil J, Stewart L (2014) The musicality of non-musicians: an index for assessing musical sophistication in the general population. PLoS ONE 9(2): 89642. https://doi.org/10.1371/journal.pone.0089642. Accessed 04 Oct 2022
John O, Srivastava S (1999) The big five trait taxonomy: history, measurement, and theoretical perspectives. In: Pervin LA, John OP (eds), Handbook of personality: theory and research, vol 2, 2nd ed. Guilford Press, New York, pp 102–138
Motamedi E, Barile F, Tkalčič M (2022) Prediction of eudaimonic and hedonic orientation of movie watchers. Appl Sci 12(19):9500. https://doi.org/10.3390/app12199500. Accessed 14 Nov 2022
Gosling SD, Rentfrow PJ, Swann WB Jr (2003) A very brief measure of the big-five personality domains. J Res Person 37(6):504–528
Tkalčič M, Ferwerda B (2018) Eudaimonic modeling of moviegoers. In: Proceedings of the 26th conference on user modeling, adaptation and personalization, pp 163–167. ACM, Singapore, Singapore. https://doi.org/10.1145/3209219.3209249. https://dl.acm.org/doi/10.1145/3209219.3209249. Accessed 17 Nov 2022
Motamedi E, Tkalcic M, Szlávik Z (2023) Eudaimonic and hedonic qualities as predictors of music videos’ relevance to users: a human-centric study. In: Adjunct proceedings of the 31st ACM conference on user modeling, adaptation and personalization. ACM, Limassol Cyprus, pp 44–49. https://doi.org/10.1145/3563359.3597415. https://dl.acm.org/doi/10.1145/3563359.3597415 Accessed 12 Sep 2023
Motamedi E, Kholgh DK, Saghari S, Elahi M, Barile F, Tkalcic M (2024) Predicting movies’ eudaimonic and hedonic scores: a machine learning approach using metadata, audio and visual features. Inf Proc Manag
Hrustanovi? S, Kavšek B, Tkalčič M (2021) Recognition of eudaimonic and hedonic qualities from song lyrics. In: Human-Computer interaction Slovenia 2021, 11 Nov 2021, Koper, Slovenia, p 9
Motamedi E, Tkalčič M (2021) Prediction of eudaimonic and hedonic movie characteristics from subtitles. In: Human-Computer interaction Slovenia 2021, 11 Nov 2021, Koper, Slovenia, p 8. https://ceur-ws.org/Vol-3054/paper6.pdf
Puc E (2021) Movie recommender system—psychological constructs and general movie sophistication or movie likeability score and movie genre. PhD thesis, University of Primorska
Duriez B, Meeus J, Vansteenkiste M (2012) Why are some people more susceptible to ingroup threat than others? The importance of a relative extrinsic to intrinsic value orientation. J Res Pers 46(2), 164–172. https://doi.org/10.1016/j.jrp.2012.01.003. Accessed 13 Jan 2024
Grave E, Bojanowski P, Gupta P, Joulin A, Mikolov T (2018) Learning word vectors for 157 languages. In: Proceedings of the international conference on language resources and evaluation (LREC 2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Tkalčič, M., Motamedi, E. (2024). Inferring Eudaimonia and Hedonia from Digital Traces. In: Ferwerda, B., Graus, M., Germanakos, P., Tkalčič, M. (eds) A Human-Centered Perspective of Intelligent Personalized Environments and Systems. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-031-55109-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-55109-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-55108-6
Online ISBN: 978-3-031-55109-3
eBook Packages: Computer ScienceComputer Science (R0)